Algebraic results on representations of semisimple Lie groups
HTML articles powered by AMS MathViewer
- by J. Lepowsky PDF
- Trans. Amer. Math. Soc. 176 (1973), 1-44 Request permission
Abstract:
Let G be a noncompact connected real semisimple Lie group with finite center, and let K be a maximal compact subgroup of G. Let $\mathfrak {g}$ and $\mathfrak {k}$ denote the respective complexified Lie algebras. Then every irreducible representation $\pi$ of $\mathfrak {g}$ which is semisimple under $\mathfrak {k}$ and whose irreducible $\mathfrak {k}$-components integrate to finite-dimensional irreducible representations of K is shown to be equivalent to a subquotient of a representation of $\mathfrak {g}$ belonging to the infinitesimal nonunitary principal series. It follows that $\pi$ integrates to a continuous irreducible Hilbert space representation of G, and the best possible estimate for the multiplicity of any finite-dimensional irreducible representation of $\mathfrak {k}$ in $\pi$ is determined. These results generalize similar results of Harish-Chandra, R. Godement and J. Dixmier. The representations of $\mathfrak {g}$ in the infinitesimal nonunitary principal series, as well as certain more general representations of $\mathfrak {g}$ on which the center of the universal enveloping algebra of $\mathfrak {g}$ acts as scalars, are shown to have (finite) composition series. A general module-theoretic result is used to prove that the distribution character of an admissible Hilbert space representation of G determines the existence and equivalence class of an infinitesimal composition series for the representation, generalizing a theorem of N. Wallach. The composition series of Weylgroup-related members of the infinitesimal nonunitary principal series are shown to be equivalent. An expression is given for the infinitesimal spherical functions associated with the nonunitary principal series. In several instances, the proofs of the above results and related results yield simplifications as well as generalizations of certain results of Harish-Chandra.References
-
N. Bourbaki, Éléments de mathématique. XXVI. Groupes et algébres de Lie. Chap. 1: Algébres de Lie, Actualités Sci. Indust., no. 1285, Hermann, Paris, 1960. MR 24 #A2641.
- François Bruhat, Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France 84 (1956), 97–205 (French). MR 84713
- Jacques Dixmier, Sur les représentations de certains groupes orthogonaux, C. R. Acad. Sci. Paris 250 (1960), 3263–3265 (French). MR 115099
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964 (French). MR 0171173 —, Idéaux primitifs dans l’algèbre enveloppante d’une algébre de Lie semi-simple complexe, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A1628-A1630.
- S. G. Gindikin and F. I. Karpelevič, Plancherel measure for symmetric Riemannian spaces of non-positive curvature, Dokl. Akad. Nauk SSSR 145 (1962), 252–255 (Russian). MR 0150239
- Roger Godement, A theory of spherical functions. I, Trans. Amer. Math. Soc. 73 (1952), 496–556. MR 52444, DOI 10.1090/S0002-9947-1952-0052444-2
- Harish-Chandra, On representations of Lie algebras, Ann. of Math. (2) 50 (1949), 900–915. MR 30945, DOI 10.2307/1969586
- Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185–243. MR 56610, DOI 10.1090/S0002-9947-1953-0056610-2
- Harish-Chandra, Representations of semisimple Lie groups. II, Trans. Amer. Math. Soc. 76 (1954), 26–65. MR 58604, DOI 10.1090/S0002-9947-1954-0058604-0
- Harish-Chandra, Representations of semisimple Lie groups. III, Trans. Amer. Math. Soc. 76 (1954), 234–253. MR 62747, DOI 10.1090/S0002-9947-1954-0062747-5
- Harish-Chandra, The Plancherel formula for complex semisimple Lie groups, Trans. Amer. Math. Soc. 76 (1954), 485–528. MR 63376, DOI 10.1090/S0002-9947-1954-0063376-X
- Harish-Chandra, The characters of semisimple Lie groups, Trans. Amer. Math. Soc. 83 (1956), 98–163. MR 80875, DOI 10.1090/S0002-9947-1956-0080875-7
- Harish-Chandra, Spherical functions on a semisimple Lie group. I, Amer. J. Math. 80 (1958), 241–310. MR 94407, DOI 10.2307/2372786
- Harish-Chandra, Some results on differential equations and their applications, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 1763–1764. MR 175998, DOI 10.1073/pnas.45.12.1763
- Harish-Chandra, Invariant differential operators and distributions on a semisimple Lie algebra, Amer. J. Math. 86 (1964), 534–564. MR 180628, DOI 10.2307/2373023
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- Sigurđur Helgason, A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1–154 (1970). MR 263988, DOI 10.1016/0001-8708(70)90037-X
- A. W. Knapp and E. M. Stein, Intertwining operators for semisimple groups, Ann. of Math. (2) 93 (1971), 489–578. MR 460543, DOI 10.2307/1970887
- Bertram Kostant, On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc. 75 (1969), 627–642. MR 245725, DOI 10.1090/S0002-9904-1969-12235-4
- R. A. Kunze and E. M. Stein, Uniformly bounded representations. III. Intertwining operators for the principal series on semisimple groups, Amer. J. Math. 89 (1967), 385–442. MR 231943, DOI 10.2307/2373128
- J. Lepowsky and G. W. McCollum, On the determination of irreducible modules by restriction to a subalgebra, Trans. Amer. Math. Soc. 176 (1973), 45–57. MR 323846, DOI 10.1090/S0002-9947-1973-0323846-5
- K. R. Parthasarathy, R. Ranga Rao, and V. S. Varadarajan, Representations of complex semi-simple Lie groups and Lie algebras, Ann. of Math. (2) 85 (1967), 383–429. MR 225936, DOI 10.2307/1970351 C. Rader, Spherical functions on semisimple Lie groups, Ann. Sci.École Norm. Sup. (to appear).
- Gérard Schiffmann, Intégrales d’entrelacement et fonctions de Whittaker, Bull. Soc. Math. France 99 (1971), 3–72 (French). MR 311838
- Nolan R. Wallach, Cyclic vectors and irreducibility for principal series representations. II, Trans. Amer. Math. Soc. 164 (1972), 389–396. MR 320233, DOI 10.1090/S0002-9947-1972-0320233-X
- D. P. Želobenko, An analog of the Cartan-Weyl theory for infinite-dimensional representations of a semi-simple complex Lie group, Dokl. Akad. Nauk SSSR 175 (1967), 24–27 (Russian). MR 0214704
Additional Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 176 (1973), 1-44
- MSC: Primary 22E45
- DOI: https://doi.org/10.1090/S0002-9947-1973-0346093-X
- MathSciNet review: 0346093