Algebraic results on representations of semisimple Lie groups
HTML articles powered by AMS MathViewer
 by J. Lepowsky PDF
 Trans. Amer. Math. Soc. 176 (1973), 144 Request permission
Abstract:
Let G be a noncompact connected real semisimple Lie group with finite center, and let K be a maximal compact subgroup of G. Let $\mathfrak {g}$ and $\mathfrak {k}$ denote the respective complexified Lie algebras. Then every irreducible representation $\pi$ of $\mathfrak {g}$ which is semisimple under $\mathfrak {k}$ and whose irreducible $\mathfrak {k}$components integrate to finitedimensional irreducible representations of K is shown to be equivalent to a subquotient of a representation of $\mathfrak {g}$ belonging to the infinitesimal nonunitary principal series. It follows that $\pi$ integrates to a continuous irreducible Hilbert space representation of G, and the best possible estimate for the multiplicity of any finitedimensional irreducible representation of $\mathfrak {k}$ in $\pi$ is determined. These results generalize similar results of HarishChandra, R. Godement and J. Dixmier. The representations of $\mathfrak {g}$ in the infinitesimal nonunitary principal series, as well as certain more general representations of $\mathfrak {g}$ on which the center of the universal enveloping algebra of $\mathfrak {g}$ acts as scalars, are shown to have (finite) composition series. A general moduletheoretic result is used to prove that the distribution character of an admissible Hilbert space representation of G determines the existence and equivalence class of an infinitesimal composition series for the representation, generalizing a theorem of N. Wallach. The composition series of Weylgrouprelated members of the infinitesimal nonunitary principal series are shown to be equivalent. An expression is given for the infinitesimal spherical functions associated with the nonunitary principal series. In several instances, the proofs of the above results and related results yield simplifications as well as generalizations of certain results of HarishChandra.References

N. Bourbaki, Éléments de mathématique. XXVI. Groupes et algébres de Lie. Chap. 1: Algébres de Lie, Actualités Sci. Indust., no. 1285, Hermann, Paris, 1960. MR 24 #A2641.
 François Bruhat, Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France 84 (1956), 97–205 (French). MR 84713
 Jacques Dixmier, Sur les représentations de certains groupes orthogonaux, C. R. Acad. Sci. Paris 250 (1960), 3263–3265 (French). MR 115099
 Jacques Dixmier, Les $C^{\ast }$algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, GauthierVillars & Cie, ÉditeurImprimeur, Paris, 1964 (French). MR 0171173 —, Idéaux primitifs dans l’algèbre enveloppante d’une algébre de Lie semisimple complexe, C. R. Acad. Sci. Paris Sér. AB 272 (1971), A1628A1630.
 S. G. Gindikin and F. I. Karpelevič, Plancherel measure for symmetric Riemannian spaces of nonpositive curvature, Dokl. Akad. Nauk SSSR 145 (1962), 252–255 (Russian). MR 0150239
 Roger Godement, A theory of spherical functions. I, Trans. Amer. Math. Soc. 73 (1952), 496–556. MR 52444, DOI 10.1090/S00029947195200524442
 HarishChandra, On representations of Lie algebras, Ann. of Math. (2) 50 (1949), 900–915. MR 30945, DOI 10.2307/1969586
 HarishChandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185–243. MR 56610, DOI 10.1090/S00029947195300566102
 HarishChandra, Representations of semisimple Lie groups. II, Trans. Amer. Math. Soc. 76 (1954), 26–65. MR 58604, DOI 10.1090/S00029947195400586040
 HarishChandra, Representations of semisimple Lie groups. III, Trans. Amer. Math. Soc. 76 (1954), 234–253. MR 62747, DOI 10.1090/S00029947195400627475
 HarishChandra, The Plancherel formula for complex semisimple Lie groups, Trans. Amer. Math. Soc. 76 (1954), 485–528. MR 63376, DOI 10.1090/S0002994719540063376X
 HarishChandra, The characters of semisimple Lie groups, Trans. Amer. Math. Soc. 83 (1956), 98–163. MR 80875, DOI 10.1090/S00029947195600808757
 HarishChandra, Spherical functions on a semisimple Lie group. I, Amer. J. Math. 80 (1958), 241–310. MR 94407, DOI 10.2307/2372786
 HarishChandra, Some results on differential equations and their applications, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 1763–1764. MR 175998, DOI 10.1073/pnas.45.12.1763
 HarishChandra, Invariant differential operators and distributions on a semisimple Lie algebra, Amer. J. Math. 86 (1964), 534–564. MR 180628, DOI 10.2307/2373023
 Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New YorkLondon, 1962. MR 0145455
 Sigurđur Helgason, A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1–154 (1970). MR 263988, DOI 10.1016/00018708(70)90037X
 A. W. Knapp and E. M. Stein, Intertwining operators for semisimple groups, Ann. of Math. (2) 93 (1971), 489–578. MR 460543, DOI 10.2307/1970887
 Bertram Kostant, On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc. 75 (1969), 627–642. MR 245725, DOI 10.1090/S000299041969122354
 R. A. Kunze and E. M. Stein, Uniformly bounded representations. III. Intertwining operators for the principal series on semisimple groups, Amer. J. Math. 89 (1967), 385–442. MR 231943, DOI 10.2307/2373128
 J. Lepowsky and G. W. McCollum, On the determination of irreducible modules by restriction to a subalgebra, Trans. Amer. Math. Soc. 176 (1973), 45–57. MR 323846, DOI 10.1090/S00029947197303238465
 K. R. Parthasarathy, R. Ranga Rao, and V. S. Varadarajan, Representations of complex semisimple Lie groups and Lie algebras, Ann. of Math. (2) 85 (1967), 383–429. MR 225936, DOI 10.2307/1970351 C. Rader, Spherical functions on semisimple Lie groups, Ann. Sci.École Norm. Sup. (to appear).
 Gérard Schiffmann, Intégrales d’entrelacement et fonctions de Whittaker, Bull. Soc. Math. France 99 (1971), 3–72 (French). MR 311838
 Nolan R. Wallach, Cyclic vectors and irreducibility for principal series representations. II, Trans. Amer. Math. Soc. 164 (1972), 389–396. MR 320233, DOI 10.1090/S0002994719720320233X
 D. P. Želobenko, An analog of the CartanWeyl theory for infinitedimensional representations of a semisimple complex Lie group, Dokl. Akad. Nauk SSSR 175 (1967), 24–27 (Russian). MR 0214704
Additional Information
 © Copyright 1973 American Mathematical Society
 Journal: Trans. Amer. Math. Soc. 176 (1973), 144
 MSC: Primary 22E45
 DOI: https://doi.org/10.1090/S0002994719730346093X
 MathSciNet review: 0346093