Cells and cellularity in infinite-dimensional normed linear spaces
HTML articles powered by AMS MathViewer
- by R. A. McCoy PDF
- Trans. Amer. Math. Soc. 176 (1973), 401-410 Request permission
Abstract:
Certain concepts such as cells, cellular sets, point-like sets, and decomposition spaces are studied and related in normed linear spaces. The relationships between these concepts in general resemble somewhat the corresponding relationships in Euclidean space.References
- R. D. Anderson, Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. Amer. Math. Soc. 126 (1967), 200β216. MR 205212, DOI 10.1090/S0002-9947-1967-0205212-3
- R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365β383. MR 214041
- R. D. Anderson and R. H. Bing, A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 74 (1968), 771β792. MR 230284, DOI 10.1090/S0002-9904-1968-12044-0
- R. D. Anderson, David W. Henderson, and James E. West, Negligible subsets of infinite-dimensional manifolds, Compositio Math. 21 (1969), 143β150. MR 246326
- Karol Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), 223β254. MR 229237, DOI 10.4064/fm-62-3-223-254
- Karol Borsuk, Fundamental retracts and extensions of fundamental sequences, Fund. Math. 64 (1969), 55-85; errata, ibid. 64 (1969), 375. MR 0243520, DOI 10.4064/fm-64-1-55-85
- Karol Borsuk, A note on the theory of shape of compacta, Fund. Math. 67 (1970), 265β278. MR 266169, DOI 10.4064/fm-67-2-265-278
- Morton Brown, The monotone union of open $n$-cells is an open $n$-cell, Proc. Amer. Math. Soc. 12 (1961), 812β814. MR 126835, DOI 10.1090/S0002-9939-1961-0126835-6
- T. A. Chapman, On some applications of infinite-dimensional manifolds to the theory of shape, Fund. Math. 76 (1972), no.Β 3, 181β193. MR 320997, DOI 10.4064/fm-76-3-181-193
- D. W. Curtis and R. A. McCoy, Stable homeomorphisms on infinite-dimensional normed linear spaces, Proc. Amer. Math. Soc. 28 (1971), 496β500. MR 283831, DOI 10.1090/S0002-9939-1971-0283831-2
- William H. Cutler, Negligible subsets of infinite-dimensional FrΓ©chet manifolds, Proc. Amer. Math. Soc. 23 (1969), 668β675. MR 248883, DOI 10.1090/S0002-9939-1969-0248883-5
- Charles Greathouse, Locally flat strings, Bull. Amer. Math. Soc. 70 (1964), 415β418. MR 161318, DOI 10.1090/S0002-9904-1964-11122-8
- David W. Henderson and R. Schori, Topological classification of infinite dimensional manifolds by homotopy type, Bull. Amer. Math. Soc. 76 (1970), 121β124. MR 251749, DOI 10.1090/S0002-9904-1970-12392-8
- V. L. Klee Jr., A note on topological properties of normed linear spaces, Proc. Amer. Math. Soc. 7 (1956), 673β674. MR 78661, DOI 10.1090/S0002-9939-1956-0078661-2
- D. E. Sanderson, An infinite-dimensional Schoenflies theorem, Trans. Amer. Math. Soc. 148 (1970), 33β39. MR 259957, DOI 10.1090/S0002-9947-1970-0259957-X University of Georgia, Summer Institute in Topology 1961 (notes).
Additional Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 176 (1973), 401-410
- MSC: Primary 57A17; Secondary 57A60
- DOI: https://doi.org/10.1090/S0002-9947-1973-0383419-5
- MathSciNet review: 0383419