KRULL DIMENSION IN POWER SERIES RINGS

BY

JIMMY T. ARNOLD

ABSTRACT. Let R denote a commutative ring with identity. If there exists a chain $P_0 \subset P_1 \subset \cdots \subset P_n$ of $n + 1$ prime ideals of R, where $P_n \neq R$, but no such chain of $n + 2$ prime ideals, then we say that R has dimension n. The power series ring $R[[X]]$ may have infinite dimension even though R has finite dimension.

1. Introduction. We shall write $\dim R = n$ to denote that R has dimension n. Seidenberg, in [6] and [7], has investigated the theory of dimension in rings of polynomials. In particular, he has shown in [6] that if $\dim R = n$, then $n + 1 \leq \dim R[X] \leq 2n + 1$, where X is an indeterminate over R. One might now ask whether it is also true that $n + 1 \leq \dim R[[X]] \leq 2n + 1$. It is easy to show that $n + 1 \leq \dim R[[X]]$ when $\dim R = n$. In [3] Fields has considered the theory of dimension in power series rings over valuation rings. Using results obtained by Fields, Arnold and Brewer have noted in [1] that $\dim V[[X]] \geq 4$ for any rank one nondiscrete valuation ring V. Thus, if $\dim R = n$, then $2n + 1$ is not, in general, an upper bound for $\dim R[[X]]$. In this paper we show that we may have $\dim R[[X]] = \infty$ even though R has finite dimension. Our main result is Theorem 1, which gives sufficient conditions on a ring R in order that $\dim R[[X]] = \infty$. In fact, the conditions given insure the existence of an infinite ascending chain of prime ideals in $R[[X]]$.

Throughout this paper, R denotes a commutative ring with identity, ω is the set of natural numbers, and ω_0 is the set of nonnegative integers. If $f(X) = \sum_{i=0}^{\infty} a_i X^i \in R[[X]]$, then we denote by A_f the ideal of R generated by the coefficients of $f(X)$. For an ideal A of R, we let $A[[X]] = \{f(X) = \sum_{i=0}^{\infty} a_i X^i \mid a_i \in A \}$ for each $i \in \omega_0$ and we define $AR[[X]]$ to be the ideal of $R[[X]]$ which is generated by A. Thus, $AR[[X]] = \{f(X) \mid A_f \subseteq B$ for some finitely generated ideal B of R, with $B \subseteq A\}$. We shall say that the ideal A is an ideal of strong finite type (or an SFT-ideal) provided there is a finitely generated ideal $B \subseteq A$ and $k \in \omega$ such that $a^k \in B$ for each $a \in A$. If each ideal of R is an SFT-ideal, then we say that R satisfies the SFT-property. Throughout, our notation and terminology are essentially that of [4].

Presented to the Society, January 21, 1971; received by the editors February 21, 1972.

AMS (MOS) subject classifications (1969). Primary 1393; Secondary 1320.

Key words and phrases. Dimension, power series ring.

Copyright © 1973, American Mathematical Society
Main Theorem. Let R be a ring which does not satisfy the SFT-property. If M is an ideal of R which is not an SFT-ideal, then we may choose a sequence {a_i^{k+1}} of elements of M so that $a_k^{k+1} \notin (a_0, \ldots, a_k)$ for each $k \in \omega$. Set $A_k = (a_0, \ldots, a_k)$ and let $A = \bigcup_{k=0}^{\infty} A_k$. For each $m \in \omega$, we now choose a sequence {a_m,i^m} of elements of A as follows. For $m = 1$, we take $a_1,i = a_i$ for each $i \in \omega$. Having defined the sequence {a_m,i^m} for $1 \leq m < n$, we define the sequence {a_n,i^n} by taking $a_n,i = a_{n-1,i+1}$ for each $i \in \omega$. For each $n \in \omega$ we set $f(n) = \sum_{i=0}^{\infty} a_n,i X^i$.

Definition 1. Suppose that $g(X) \in R[[X]]$, $g(X) = \sum_{i=0}^{\infty} b_i X^i$, and let n, m, μ, r be integers such that $m \geq n \geq 1$, and $r > 0$. We shall say that the tuple (g, m, μ, r) has property (n) if for $i > r$ there exists an integer t_i such that the following hold, where we assume that $a_m,i = a_n,k_i = a_{n+1,s_i}$:

(i) $b_{t_i} = a_m,i + \alpha$ for some $\alpha \in A_{s_i-1}$.
(ii) $t_i \leq \mu k_i$.
(iii) $k_i \in A_{s_i-1}$ for $0 < t_i \leq k_i$.

For $n \in \omega$, we set $S_n = \{g(X) \in R[[X]] | (g, m, \mu, r)$ has property (n) for some $m, \mu \in \omega$ and $r \in \omega\}$. S_n is nonempty since $(1, 1, n, 1, 0)$ satisfies property (n).

Lemma 1. If $n, n_1 \in \omega$ are such that $n \geq n_1$, then $S_n \subseteq S_{n_1}$.

Proof. Suppose that $g(X) \in S_n$ and that (g, m, μ, r) has property (n). We wish to see that (g, m, μ, r) also has property (n_1). But properties (i) and (iii) of Definition 1 already hold since they are independent of the choice of n. To see that (ii) holds, suppose that $i > r$ and that $a_m,i = a_n,k_i = a_{n+1,s_i}$. Then $k_i \leq v_i$, and hence $t_i \leq \mu k_i \leq \mu v_i$. It follows that $g(X) \in S_{n_1}$.

Lemma 2. For each $n \in \omega$, S_n is a multiplicatively closed subset of $R[[X]]$.

Proof. Let $g(X) \in R[[X]]$, $g(X) = \sum_{i=0}^{\infty} b_i X^i$. We first show that if (g, m, μ, r) has property (n) and if $m_1 \geq m$, then (g, m_1, μ, r) also has property (n). Thus, suppose that $i \geq r$ and that $a_{m_1,i} = a_m,i = a_{m+1,s_i}$. Since $j_i \geq i \geq r$, there exists an integer t_{j_i} such that:

(i) $b_{t_{j_i}} = a^\mu_{m,i,j_i} + \alpha$ for some $\alpha \in A_{s_i-1}$.
(ii) $t_{j_i} \leq \mu k_i$.
(iii) $k_i \in A_{s_i-1}$ for $0 \leq \lambda < t_{j_i}$.

Taking $r_i = t_{j_i}$ and using the fact that $a_{m_1,i} = a_m,i$, we see that r_i satisfies properties (i), (ii) and (iii) of Definition 1 so (g, m_1, μ, r) has property (n).

Now let $g(X), h(X) \in S_n$, where $g(X) = \sum_{i=0}^{\infty} b_i X^i$ and $h(X) = \sum_{i=0}^{\infty} c_i X^i$, and suppose that (g, m_1, μ_1, r_1) and (b, m_2, μ_2, r_2) satisfy property (n). By the preceding remarks, we may assume that $m_1 = m_2$ and, clearly, we may assume that $r_1 = r_2$. Set $m = m_1 = m_2$ and $r = r_1 = r_2$. We wish to show that $(g, h, m, \mu_1 + \mu_2, r)$
has property (n). Suppose that \(i \geq r \) and that \(a_{m, i} = a_{n, k} = a_1, s_i \). By assumption there exist integers \(t_i \) and \(r_i \) such that \(b_{t_i} = a_{m, i} + \alpha \) and \(c_{r_i} = a_{m, i} + \beta \) for some \(\alpha, \beta \in A_{S_{i-1}} \). Moreover, \(b_{\lambda}, c_\delta \in A_{S_{i-1}} \) for \(0 \leq \lambda < t_i \) and \(0 \leq \delta < r_i \). If \(g(X)b(X) = \sum_{j=0}^{\infty} \xi_j X^j \), then
\[
\xi_{t_i+r_i} = b_{t_i}c_{r_i} + \sum_{\lambda+\delta=t_i+r_i; 0 \leq \lambda < t_i; 0 \leq \delta < r_i} b_{\lambda}c_\delta.
\]
But if \(\lambda \neq t_i \) and \(\delta \neq r_i \), then either \(\lambda < t_i \) or \(\delta < r_i \). Consequently, either \(b_{\lambda} \in A_{S_{i-1}} \) or \(c_\delta \in A_{S_{i-1}} \). Since \(b_{t_i}c_{r_i} = a_{m, i} + \alpha a_{m, i}^2 + \alpha a_{m, i} + \beta a_{m, i} + \alpha \beta \), it follows that
\[
\xi_{t_i+r_i} = a_{m, i}^2 + \gamma \text{ for some } \gamma
\]
and some \(\gamma \in A_{S_{i-1}} \). By assumption, we have \(t_i < \mu_1 k_i \) and \(r_i < \mu_2 k_i \). Therefore, \(t_i + r_i \leq (\mu_1 + \mu_2) k_i \). Finally, if \(0 \leq \lambda < t_i + r_i \), then \(\xi_\lambda = \sum_{j=0}^{\infty} b_{j}c_{\lambda-j} \in A_{S_{i-1}} \) since either \(j < t_i \) or \(\lambda - j < r_i \).

Lemma 3. Let \(n, \nu \in \omega \) be such that \(n > \nu \). If \(g(X) \in S_n \), then \(g(X) + b(X)f(\nu)(X) \in S_n \) for arbitrary \(b(X) \in R[[X]] \).

Proof. Suppose that \(g(X) = \sum_{i=0}^{\infty} b_i X^i \) and that \((g, m, \mu, r) \) has property (n). Let \(\eta = \min \{ j \in \omega \mid a_{m, j} = a_{n, k} = \mu \} \) and set \(r_1 = \max \{ r, \eta \} \). If \(q(X) = g(X) + b(X)f(\nu)(X) = \sum_{i=0}^{\infty} \xi_i X^i \), then we wish to show that \((q, m, \mu, r_1) \) satisfies property (n). Thus, suppose that \(i \geq r_1 \) and that \(a_{m, i} = a_{n, k} = a_1, s_i \). By assumption, there exists an integer \(t_i \) such that \(b_{t_i} = a_{m, i}^2 + \alpha \) for some \(\alpha \in A_{S_{i-1}} \) and such that \(t_i < \mu k_i \leq k_i^2 \). Since \(\lambda \geq k_i^2 + 1 \), it follows that \(a_{\nu, j} \in A_{S_{i-1}} \) for \(0 \leq j \leq t_i \). Consequently, if \(b(X) = \sum_{j=0}^{\infty} c_j X^j \) and \(b(X)f(\nu)(X) = \sum_{j=0}^{\infty} g_j X^j \), then \(\gamma_{t_i} = \sum_{j=0}^{t_i} a_{\nu, j} c_{t_i-j} \in A_{S_{i-1}} \). Therefore, \(\xi_{t_i} = b_{t_i} + \gamma_{t_i} = a_{m, i}^2 + \alpha + \gamma_{t_i} \) and (i) of Definition 1 is satisfied. We already have that \(t_i \leq \mu k_i \) so (ii) is also satisfied. To see that (iii) holds, suppose that \(0 \leq \delta < t_i \). By assumption, we have that \(b_\delta \in A_{S_{i-1}} \). Also, \(g_\delta = \sum_{j=0}^{\infty} a_{\nu, j} c_{t_i-j} \in A_{S_{i-1}} \), since \(j \leq \delta < t_i \leq k_i^2 \) implies that \(a_{\nu, j} \in A_{S_{i-1}} \). Consequently, \(\xi_\delta = b_\delta + g_\delta \in A_{S_{i-1}} \) and our proof is complete.

We now state our main result.

Theorem 1. Let \(R \) be a commutative ring with identity. The following conditions are equivalent and imply that \(R[[X]] \) has infinite dimension.

1. \(R \) does not satisfy the SFT-property.
2. There exists an ideal \(A \) of \(R \) such that \(A[[X]] \notin \sqrt{AR[[X]]} \).
3. There exists a prime ideal \(P \) of \(R \) such that \(P[[X]] \notin \sqrt{PR[[X]]} \).

Proof. Assume that (1) holds. We shall first prove that \(\dim R[[X]] = \infty \). Let the ideal \(A \) be as previously defined. We wish to see that \(AR[[X]] \cap S_1 = \emptyset \). Thus, let \(g(X) \in AR[[X]] \cap S_1 \). Then \(A_g \subseteq C \) for some finitely generated ideal \(C \) of \(R \), where \(C \subseteq A \). Consequently, there exists \(k \in \omega_0 \) such that \(A_k \subseteq A_k \). Suppose that \((g, m, \mu, r) \) has property (1) and that \(r \) has been chosen so that if \(i \geq r \) and \(a_{m, i} = a_1, s_i \), then \(s_i > \max \{ \mu, k \} \). If \(t_i \) is such that \(b_{t_i} = a_{m, i}^2 + \alpha \) for some \(\alpha \in A_{S_{i-1}} \), then we have \(a_{m, i}^\mu + \alpha \in A_k \subseteq A_{S_{i-1}} \).
Therefore, \(a_{m,i}^{s_i} \in A_{s_i-1} \), a contradiction since \(a_{m,i}^{s_i} \notin A_{s_i-1} \) and \(s_i > \mu \).

(Since \(f(1) \in S_1 \), it follows that \(f(1) \in A[[X]] - \sqrt{AR[[X]]} \). Thus we see that \(1 \) implies \(2 \).) But \(S_1 \cap AR[[X]] = \emptyset \) implies the existence of a prime ideal \(P \) of \(R[[X]] \) such that \(AR[[X]] \subseteq P \) and \(P \cap S_1 = \emptyset \). Suppose there exists a chain \(P_1 \subseteq \cdots \subseteq P_n \) of prime ideals of \(R[[X]] \) such that \(P \cap S_1 = \emptyset \), and let \(C_n = P_n / (f(n)(X)) \). If \(g(X) \in S_{n+1} \), then by Lemma 3, \(g(X) + b(X)f(n)(X) \in S_{n+1} \subseteq S_n \) for arbitrary \(b(X) \in R[[X]] \). It follows that \(g(X) + b(X)f(n)(X) \notin P_n \) and hence that \(g(X) \notin C_n \). Thus, \(C_n \cap S_{n+1} = \emptyset \) and there exists a prime ideal \(P_{n+1} \) such that \(P_n \subseteq P_{n+1} \subseteq S_{n+1} = \emptyset \). We see by induction that \(\dim R[[X]] = \infty \).

To see that \(2 \) implies \(3 \), we note that if \(A[[X]] \nsubseteq \sqrt{AR[[X]]} \), then there exists a prime ideal \(Q \) of \(R[[X]] \) such that \(AR[[X]] \subseteq Q \) but \(A[[X]] \nsubseteq Q \). If \(P = Q \cap R \), then \(P \supseteq A \) and hence \(P[[X]] \supseteq A[[X]] \). Therefore, \(Q \supseteq PR[[X]] \) but \(Q \nsubseteq P[[X]] \). It follows that \(P[[X]] \nsubseteq \sqrt{PR[[X]]} \). In order to show that \(3 \) implies \(1 \), we require the following lemma.

Lemma 4. Let \(A \) be an ideal of \(R \) and suppose that there exists \(k \in \omega \) such that \(a^k = 0 \) for each \(a \in A \). If \(f(X) \in A[[X]] \), then \(f(X) \) is nilpotent.

Proof. We first prove the existence of an integer \(m \) such that \(m\xi = 0 \) for all \(\xi \in A^m \). Suppose we have integers \(\mu, \nu_1, \ldots, \nu_t \) such that \(\mu\nu_1 \cdots \nu_t = 0 \) for all \(a_1, \ldots, a_t \in A \) (certainly this condition is satisfied if \(\mu = t = 1 \) and \(\nu_1 = k \)) and suppose that \(\nu_i \geq 2 \) for some \(i, 1 \leq i \leq t \). For convenience, we suppose that \(\nu_1 \geq 2 \). Now let \(b_0, b_1, \ldots, b_t \in A \). By assumption, we have that

\[
0 = \mu (b_0 + b_1)^{\nu_1} b_2^{\nu_2} \cdots b_t^{\nu_t} = \mu b_0^{\nu_1 - 2} (b_0 + b_1)^{\nu_1 - 2} b_2^{\nu_2} \cdots b_t^{\nu_t} = \sum_{j=0}^{\nu_1} \xi_j f^j,
\]

where \(\xi_j = \mu (\nu_1) b_0^{2\nu_1 - j - 2} b_1^{\nu_1 - 2} \cdots b_t^{\nu_t} \). If \(0 \leq j \leq \nu_1 - 2 \), then \(2\nu_1 - j - 2 > \nu_1 \), so that \(\xi_j = 0 \). Also, \(\xi_{\nu_1} = b_0^{\nu_1 - 2} (\mu b_1^{\nu_1} b_2^{\nu_2} \cdots b_t^{\nu_t}) = 0 \). It follows that \(0 = \xi_{\nu_1 - 1} = \mu \nu_1 b_1^{\nu_1 - 1} b_2^{\nu_2 - 1} \cdots b_t^{\nu_t} \). By a finite number of repetitions of this procedure, we may find integers \(\mu, \nu_1, \ldots, \nu_t \) such that \(\mu a_1 \cdots a_t = 0 \) for all \(a_1, \ldots, a_t \in A \). If we set \(m = \mu \), then \(mA^m = (0) \). Now let \(f(X) \in A[[X]] \), \(f(X) = \sum_{i=0}^{\infty} a_i X^i \). Following a proof given by Fields [2, Theorem 1] we suppose that \(m \) is a prime integer. Then \((f(X))p^k = (\sum_{i=0}^{\infty} a_i X^i)^{p^k} = 0 \). If \(m \) is not prime and \(m = p_1^{e_1} \cdots p_t^{e_t} \) is a prime factorization for \(m \), then let \(\phi_j : R[[X]] \rightarrow (R/p_j A^{p_j})[[X]] \) be the canonical homomorphism for \(1 \leq j \leq t \). By the previous case for \(m \) a prime, we have \(0 = [\phi_j(f(X))]p_j^{e_j} \), that is \((f(X))p_j^{e_j} \in p_j A^{p_j}[[X]] \). If \(n = (p_1^{e_1} + \cdots + p_t^{e_t})m \), then

\[
(f(X))^n - \left((f(X))p_1^{e_1} \cdots (f(X))p_t^{e_t} \right)^m \in [(p_1 A^{p_1})^e[[X]]] \cdots (p_t A^{p_t})^{e_d[[X]]} m \subseteq mA^m[[X]] = (0).
\]
To complete the proof of Theorem 1, suppose that B is an ideal of R which is an SFT-ideal. By definition, there exists $k \in \omega$ and a finitely generated ideal $C \subseteq B$ such that $b^k \in C$ for all $b \in B$. Setting $\overline{R} = R/C$ and $\overline{B} = B/C$, it follows from Lemma 4 that $f(X)$ is nilpotent for each $f(X) \in \overline{B}[[X]]$. Therefore, if $g(X) \in B[[X]]$, then $g(X) = \sqrt{C[[X]]} = \sqrt{CR[[X]]} \subseteq \sqrt{BR[[X]]}$. Consequently, if P is a prime ideal of R such that $P[[X]] \neq \sqrt{PR[[X]]}$, then P is not an SFT-ideal. This proves that (3) implies (1) and the theorem follows.

If $\dim R = n$, then it is natural to ask whether the conditions given in Theorem 1 are necessary in order that $\dim R[[X]] = \infty$. Another interesting question which arises is whether the following conditions are equivalent:

1. $\dim R[[X]] \neq n + 1$.
2. $\dim R[[X]] = \infty$.

We show that both these questions can be answered affirmatively if $\dim R = 0$.

Theorem 2. Let R be a commutative ring with identity and suppose that $\dim R = 0$. Then the following statements are equivalent:

1. $\dim R[[X]] \neq 1$.
2. $\dim R[[X]] = \infty$.
3. R contains a maximal ideal M such that $M[[X]] \neq \sqrt{MR[[X]]}$.

Proof. We have already seen that (3) implies (2) and clearly, (2) implies (1). Suppose that (1) holds and let $Q_0 \subseteq Q_1 \subseteq Q_2 \subseteq R[[X]]$ be a chain of prime ideals of $R[[X]]$. If $M = Q_0 \cap R$, then M is a maximal ideal of R so we have $M = Q_0 \cap R = Q_1 \cap R = Q_2 \cap R$. Now $Q_0 \nsubseteq M[[X]]$ since $R[[X]]/M[[X]] \cong (R/M)[[X]]$ is a rank one discrete valuation ring. But by [1, Proposition 1], either $Q_0 \subseteq M[[X]]$ or $Q_0 \nsubseteq M[[X]]$. Therefore, $MR[[X]] \subseteq Q_0 \subseteq M[[X]]$ and $M[[X]] \neq \sqrt{MR[[X]]}$.

3. **Examples.** We conclude by providing three examples of finite dimensional rings R such that $\dim R[[X]] = \infty$.

Example 1. If V is a rank one nondiscrete valuation ring, then $\dim V[[X]] = \infty$. More generally, if V is a valuation ring which contains an idempotent prime ideal P, then P is not an SFT-ideal so $\dim V[[X]] = \infty$.

Example 2. An integral domain D is said to be almost Dedekind provided D_M is a Noetherian valuation ring for each maximal ideal M of D. Let D be any almost Dedekind domain which is not Dedekind [4, p. 586], and let M be a maximal ideal of D which is not finitely generated. It follows from Theorem 29.4 of [4, p. 411] that M is not the radical of a finitely generated ideal. Thus, M is not an SFT-ideal and $\dim D[[X]] = \infty$. More generally, if R is a commutative ring with identity which does not have Noetherian prime spectrum, then $\dim R[[X]] = \infty$.

This is an immediate consequence of Corollary 2.4 of [5] which states that a ring R has Noetherian prime spectrum if and only if each prime ideal of R is the radical of a finitely generated ideal. Example 1 and the following example illustrate...
that we may have $\dim R[[X]] = \infty$ even though R has Noetherian prime spectrum.

Example 3. Let $\{Y_i\}_{i=0}^\infty$ be a collection of indeterminates over \mathbb{Q}, the field of rationals, and set $R = \mathbb{Q}[Y_0, Y_1, \ldots]/(Y_0^n, Y_1^n, \ldots)$, where n is a positive integer and $n \geq 2$. We note that $\dim R = 0$ and that $M = (\bar{Y}_0, \bar{Y}_1, \ldots)$ is the unique proper prime ideal of R. If $f(X) = \sum_{i=0}^\infty \bar{Y}_i X^i$, then Fields proves in [2] that $f(X)$ is not nilpotent. If $g(X) \in MR[[X]]$, then $g(X) = \sum_{i=0}^t \bar{Y}_i b_i(X)$ for some $t \in \omega$ and $b_i(X) \in R[[X]]$. Since $\bar{Y}_i^n = 0$ for $0 \leq i \leq t$, it follows that $g(X)$ is nilpotent. Consequently, $f(X) \notin \sqrt{MR[[X]]}$ so, by Theorem 1, $\dim R[[X]] = \infty$.

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY, BLACKSBURG, VIRGINIA 24061