Krull dimension in power series rings
HTML articles powered by AMS MathViewer
- by Jimmy T. Arnold
- Trans. Amer. Math. Soc. 177 (1973), 299-304
- DOI: https://doi.org/10.1090/S0002-9947-1973-0316451-8
- PDF | Request permission
Abstract:
Let R denote a commutative ring with identity. If there exists a chain ${P_0} \subset {P_1} \subset \cdots \subset {P_n}$ of $n + 1$ prime ideals of R, where ${P_n} \ne R$, but no such chain of $n + 2$ prime ideals, then we say that R has dimension n. The power series ring $R[[X]]$ may have infinite dimension even though R has finite dimension.References
- J. T. Arnold and J. W. Brewer, When $(D[[X]])_{P[[X]]}$ is a valuation ring, Proc. Amer. Math. Soc. 37 (1973), 326โ332. MR 311656, DOI 10.1090/S0002-9939-1973-0311656-X
- David E. Fields, Zero divisors and nilpotent elements in power series rings, Proc. Amer. Math. Soc. 27 (1971), 427โ433. MR 271100, DOI 10.1090/S0002-9939-1971-0271100-6
- David E. Fields, Dimension theory in power series rings, Pacific J. Math. 35 (1970), 601โ611. MR 277518, DOI 10.2140/pjm.1970.35.601
- Robert W. Gilmer, Multiplicative ideal theory, Queenโs Papers in Pure and Applied Mathematics, No. 12, Queenโs University, Kingston, Ont., 1968. MR 0229624
- Jack Ohm and R. L. Pendleton, Rings with noetherian spectrum, Duke Math. J. 35 (1968), 631โ639. MR 229627
- A. Seidenberg, A note on the dimension theory of rings, Pacific J. Math. 3 (1953), 505โ512. MR 54571, DOI 10.2140/pjm.1953.3.505
- A. Seidenberg, On the dimension theory of rings. II, Pacific J. Math. 4 (1954), 603โ614. MR 65540, DOI 10.2140/pjm.1954.4.603
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 177 (1973), 299-304
- MSC: Primary 13J05
- DOI: https://doi.org/10.1090/S0002-9947-1973-0316451-8
- MathSciNet review: 0316451