$k$-parameter semigroups of measure-preserving transformations
HTML articles powered by AMS MathViewer
- by Norberto Angel Fava
- Trans. Amer. Math. Soc. 177 (1973), 345-352
- DOI: https://doi.org/10.1090/S0002-9947-1973-0318448-0
- PDF | Request permission
Abstract:
An individual ergodic theorem is proved for semigroups of measure-preserving transformations depending on k real parameters, which generalizes N. Wiener’s ergodic theorem.References
- A.-P. Calderón, Ergodic theory and translation-invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 349–353. MR 227354, DOI 10.1073/pnas.59.2.349
- Mischa Cotlar, A unified theory of Hilbert transforms and ergodic theorems, Rev. Mat. Cuyana 1 (1955), 105–167 (1956) (English, with Spanish summary). MR 84632
- Norberto Angel Fava, Weak type inequalities for product operators, Studia Math. 42 (1972), 271–288. MR 308364, DOI 10.4064/sm-42-3-271-288
- N. M. Rivière, On singular integrals, Bull. Amer. Math. Soc. 75 (1969), 843–847. MR 243389, DOI 10.1090/S0002-9904-1969-12321-9
- Antoni Zygmund, Trigonometrical series, Chelsea Publishing Co., New York, 1952. 2nd ed. MR 0076084
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 177 (1973), 345-352
- MSC: Primary 28A65
- DOI: https://doi.org/10.1090/S0002-9947-1973-0318448-0
- MathSciNet review: 0318448