Fatou theorems for eigenfunctions of the invariant differential operators on symmetric spaces
HTML articles powered by AMS MathViewer
- by H. Lee Michelson
- Trans. Amer. Math. Soc. 177 (1973), 257-274
- DOI: https://doi.org/10.1090/S0002-9947-1973-0319113-6
- PDF | Request permission
Abstract:
On a Riemannian symmetric space of noncompact type we introduce a generalization of the Poisson kernel which may be used to generate simultaneous eigenfunctions of the invariant differential operators with eigenvalues not necessarily zero. We investigate the boundary behavior of our generalized Poisson integrals, extending to them many of the Fatou-type theorems known for harmonic functions.References
- A. Erdélyi et al., Higher transcendental functions. Vol. I. The hypergeometric function, Legendre functions, McGraw-Hill, New York, 1953. MR 15, 419.
- Harry Furstenberg, Translation-invariant cones of functions on semi-simple Lie groups, Bull. Amer. Math. Soc. 71 (1965), 271–326. MR 177062, DOI 10.1090/S0002-9904-1965-11283-6
- S. G. Gindikin and F. I. Karpelevič, Plancherel measure for symmetric Riemannian spaces of non-positive curvature, Dokl. Akad. Nauk SSSR 145 (1962), 252–255 (Russian). MR 0150239
- Harish-Chandra, Spherical functions on a semisimple Lie group. I, Amer. J. Math. 80 (1958), 241–310. MR 94407, DOI 10.2307/2372786
- Harish-Chandra, Spherical functions on a semisimple Lie group. II, Amer. J. Math. 80 (1958), 553–613. MR 101279, DOI 10.2307/2372772
- Sigurđur Helgason, A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1–154 (1970). MR 263988, DOI 10.1016/0001-8708(70)90037-X
- Sigurdur Helgason, Group representations and symmetric spaces, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 313–319. MR 0467177
- S. Helgason and A. Korányi, A Fatou-type theorem for harmonic functions on symmetric spaces, Bull. Amer. Math. Soc. 74 (1968), 258–263. MR 229179, DOI 10.1090/S0002-9904-1968-11912-3
- F. I. Karpelevič, The geometry of geodesics and the eigenfunctions of the Beltrami-Laplace operator on symmetric spaces, Trans. Moscow Math. Soc. 1965 (1967), 51–199. Amer. Math. Soc., Providence, R.I., 1967. MR 0231321
- A. W. Knapp, Fatou’s theorem for symmetric spaces. I, Ann. of Math. (2) 88 (1968), 106–127. MR 225938, DOI 10.2307/1970557
- A. W. Knapp and R. E. Williamson, Poisson integrals and semisimple groups, J. Analyse Math. 24 (1971), 53–76. MR 308330, DOI 10.1007/BF02790369
- Adam Korányi, Boundary behavior of Poisson integrals on symmetric spaces, Trans. Amer. Math. Soc. 140 (1969), 393–409. MR 245826, DOI 10.1090/S0002-9947-1969-0245826-X —, Harmonic functions on symmetric spaces, Geometry and Harmonic Analysis of Symmetric Spaces, Dekker, New York (to appear). L. -Å. Lindahl, Fatou’s theorem for symmetric spaces, Mittag-Leffler Institute, 1971. (manuscript)
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776 —, Trigonometrical series. Vol. II, 2nd rev. ed., Cambridge Univ. Press, New York, 1959. MR 21 #6498.
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 177 (1973), 257-274
- MSC: Primary 53C35; Secondary 43A85
- DOI: https://doi.org/10.1090/S0002-9947-1973-0319113-6
- MathSciNet review: 0319113