Interpolation between consecutive conjugate points of an $n$th order linear differential equation
HTML articles powered by AMS MathViewer
- by G. B. Gustafson
- Trans. Amer. Math. Soc. 177 (1973), 237-255
- DOI: https://doi.org/10.1090/S0002-9947-1973-0320419-5
- PDF | Request permission
Abstract:
The interpolation problem ${x^{(n)}} + {P_{n - 1}}{x^{(n - 1)}} + \cdots + {P_0}x = 0$, ${x^{(i)}}({t_j}) = 0,i = 0, \cdots ,{k_j} - 1,j = 0, \cdots ,m$, is studied on the conjugate interval $[a,{\eta _1}(a)]$. The main result is that there exists an essentially unique nontrivial solution of the problem almost everywhere, provided ${k_1} + \cdots + {k_m} \geq n$, and cer tain other inequalities are satisfied, with $a = {t_0} < {t_1} < \cdots < {t_m} = {\eta _1}(a)$. In particular, this paper corrects the results of Azbelev and Caljuk (Mat. Sb. 51 (93) (1960), 475-486; English transl., Amer. Math. Soc. Transl. (2) 42 (1964), 233-245) on third order equations, and shows that their results are correct almost everywhere.References
- N. V. Azbelev and Z. B. Calyuk, On the question of the distribution of the zeros of solutions of a third-order linear differential equation, Mat. Sb. (N.S.) 51 (93) (1960), 475–486 (Russian). MR 0121529
- John H. Barrett, Oscillation theory of ordinary linear differential equations, Advances in Math. 3 (1969), 415–509. MR 257462, DOI 10.1016/0001-8708(69)90008-5
- J. Dieudonné, Foundations of modern analysis, Pure and Applied Mathematics, Vol. X, Academic Press, New York-London, 1960. MR 0120319
- Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
- Walter Leighton and Zeev Nehari, On the oscillation of solutions of self-adjoint linear differential equations of the fourth order, Trans. Amer. Math. Soc. 89 (1958), 325–377. MR 102639, DOI 10.1090/S0002-9947-1958-0102639-X
- Valter Šeda, Über die Transformation der linearen Differentialgleichungen $n$-ter Ordnung. I, Časopis Pěst. Mat. 90 (1965), 385–412 (English, with Slovak and Russian summaries). MR 0196164
- Valter Šeda, Über die Transformation der linearen Differentialgleichungen $n$-ter Ordnung. II, Časopis Pěst. Mat. 92 (1967), 418–435 (German, with Slovak and Russian summaries). MR 0229888
- Valter Šeda, On a class of linear differential equations of order $n$, $n\geqq 3$, Časopis Pěst. Mat. 92 (1967), 247–261 (English, with Slovak and Russian summaries). MR 0222390, DOI 10.21136/CPM.1967.108398
- Thomas L. Sherman, Properties of solutions of $n\textrm {th}$ order linear differential equations, Pacific J. Math. 15 (1965), 1045–1060. MR 185185, DOI 10.2140/pjm.1965.15.1045
- Thomas L. Sherman, Conjugate points and simple zeros for ordinary linear differential equations, Trans. Amer. Math. Soc. 146 (1969), 397–411. MR 255912, DOI 10.1090/S0002-9947-1969-0255912-6
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 177 (1973), 237-255
- MSC: Primary 34B10
- DOI: https://doi.org/10.1090/S0002-9947-1973-0320419-5
- MathSciNet review: 0320419