Primary ideals in rings of analytic functions
HTML articles powered by AMS MathViewer
- by R. Douglas Williams
- Trans. Amer. Math. Soc. 177 (1973), 37-49
- DOI: https://doi.org/10.1090/S0002-9947-1973-0320760-6
- PDF | Request permission
Abstract:
Let A be the ring of all analytic functions on a connected, noncompact Riemann surface. We use the valuation theory of the ring A as developed by N. L. Alling to analyze the structure of the primary ideals of A. We characterize the upper and lower primary ideals of A and prove that every nonprime primary ideal of A is either an upper or a lower primary ideal. In addition we give some necessary and sufficient conditions for certain ideals of A to be intersections of primary ideals.References
- Norman L. Alling, The valuation theory of meromorphic function fields over open Riemann surfaces, Acta Math. 110 (1963), 79–96. MR 160781, DOI 10.1007/BF02391855
- Norman L. Alling, The valuation theory of meromorphic function fields, Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966) Amer. Math. Soc., Providence, R.I., 1968, pp. 8–29. MR 0236404
- Herta Florack, Reguläre und meromorphe Funktionen auf nicht geschlossenen Riemannschen Flächen, Schr. Math. Inst. Univ. Münster 1948 (1948), no. 1, 34 (German). MR 37362
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199, DOI 10.1007/978-1-4615-7819-2
- Melvin Henriksen, On the ideal structure of the ring of entire functions, Pacific J. Math. 2 (1952), 179–184. MR 47928, DOI 10.2140/pjm.1952.2.179
- Melvin Henriksen, On the prime ideals of the ring of entire functions, Pacific J. Math. 3 (1953), 711–720. MR 59479, DOI 10.2140/pjm.1953.3.711
- Carl W. Kohls, Primary ideals in rings of continuous functions, Amer. Math. Monthly 71 (1964), 980–984. MR 172106, DOI 10.2307/2311912
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- O. F. G. Schilling, The Theory of Valuations, Mathematical Surveys, No. 4, American Mathematical Society, New York, N. Y., 1950. MR 0043776, DOI 10.1090/surv/004
- R. Douglas Williams, Intersections of primary ideals in rings of continuous functions, Canadian J. Math. 24 (1972), 502–519. MR 295066, DOI 10.4153/CJM-1972-043-8
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249, DOI 10.1007/978-3-662-29244-0
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 177 (1973), 37-49
- MSC: Primary 46J20; Secondary 13C05, 30A98
- DOI: https://doi.org/10.1090/S0002-9947-1973-0320760-6
- MathSciNet review: 0320760