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SELF-DUAL AXIOMS FOR MANY-DIMENSIONAL

PROJECTIVE GEOMETRY

BY

MARTINUS ESSER

ABSTRACT. Proposed and compared are four equivalent sets R, S, T, D oí

self-dual axioms for projective geometries, using points, hyperplanes and in-

cidence as primitive elements and relation.   The set R is inductive on the num-

ber of dimensions.   The sets S,  T, D all include the axiom "on every n points

there is a plane", the dual of this axiom, one axiom on the existence of a cer-

tain configuration, and one or several axioms on the impossibility of certain

configurations.   These configurations consist of (n + 1) points and (n + 1)

planes for sets S, T, but of (tí + 2) points and (n + 2) planes for set D.   Partial

results are obtained by a preliminary study of self-dual axioms for simplicial

spaces (spaces which may have fewer than 3 points per line).

1. Definitions and results.   Projective spaces, with finite dimension re, are

defined classically by nondual axioms, using undefined points and certain sets

called lines.   We propose several equivalent sets of self-dual axioms, using unde-

fined points, planes (= hyperplanes) and incidence.   With further details and defi-

nitions to be given later, these axioms for Projective spaces P [or in brackets for

simplicial spaces A/J ate

The classic [l, p. 24] Set LP [or LA/].

Axiom I.  Awy two distinct points are in exactly one line.

Axiom  IIP [or UN].   There exist at least three lor two] points in each line.

Axiom III.   If five distinct points P, Q, R, 5, 7 satisfy the collineations  PQR,

PST,then there exists a point U satisfying QSU, RTU.

Axiom IV (and V).   There exists at least (and at most) re + 1  independent points.

A Set PP[or RN] inductive on dimensions.

Axiom a.   For   re = 1   the relation "on" is one-to-one.

Axiom bP[or bN].   For   re = 1   there exist at least three [pr two] points.

Axiom c.   For   re > 2   there exist at least one point and one plane not on each

other.

\xiom d.   For   re > 2   any reduction ÍR, r] is an in - \)-dimensional space.
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A Set TP [or TN\ of axioms by configurations.

Axiom 1 (and 2). On every n points (planes) there exists at least one plane

(point).

Axiom 3TP[or 3TN].   There exists a semidoublex [or a semisimplex].

Axiom 4 (and 5).  Distinct planes (points) are distinguishable.

Axiom 6T.   // T is a point on the n planes, and if t is a plane on the n points,

of a semisimplex, then T is not on t.

If we replace Axiom 3TP [or 3T/V] by the stronger

Axiom 3D[or 3SN].   There exists a doublex [or a simplex],

then we shall replace Axioms 4, 5, 6T by weaker axioms given later.

We consider also Weak spaces W defined equivalently by later configuration

axioms or by the following inductive Sel RW.

Axiom aW.   For n = 0 all incidences are "not on".

Axioms bW and cW. For n = 0 and ¡or n > 1 there exist a point and a plane

not on each other.

Axiom dW.   For n > 1   any reduction \R, r]   is an (n - l)-dimensional space.

We repeat that we start with undefined objects called points, undefined ob-

jects called planes, and an undefined relation on between single points and single

planes.   The symbols o and ~ mean "on" and "not on".   Thus A ° a, A ~ b means

that the point A is on the plane a but not on the plane b.   Independent is defined

in §5.   By a reduction ÍR, r], where always we assume  R ~ r, we mean the set of

all points on the plane r and of all planes on the point R.   Two planes (or points)

are said to be distinguishable if there exists a point (or plane) on exactly one of

the two planes (or points).   Duality means to interchange points and planes.

Axioms and configurations are identified by letters:   P = projective, N = sim-

plicial, W = weak, U = undistinguished, L = lines, R = reduction, S = square, T =

triangle, D = doublex.   For any positive integer a, a set of a points Ai and of a

planes az, with  z = 1, 2, • • • , a, is called an a-square if the corresponding (square)

incidence table is completely specified, and is called an a-triangle if the inci-

dences Ai ? aj are specified for at least all  z > /.   We define various configurations

(giving notation = name = properties)

TNa = singlenot a-triangle = a-triangle with Az ° aj fot i > j; Ai -^ ai.

S Na = singlenot a-square = a-square with Az ° aj for i 4 j] Ai ~ ai.

TPa = doublenot a-triangle = a-triangle with Az ° aj fot i > j; Ai -\- ai, Ai -\-

a(z+ 1).

SPa = doublenot a-square = a-square with  Az ~o ai,  Ai ~ a(i +1);  Ai ° aj

otherwise.

D(n + 2)= doublex = (n + 2)-square with Ai ~ ai, Ai ~ a(i + 1), A(rz + 2) -v>

al;  Ai o aj otherwise.
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In particular

Semisimplex = TNn, Simplex = SNin + l), Semidoublex = 7P(re + l).

It is allowed to take a= 1   in a doublenot triangle or square, the hypothesis

Az ~ a(z + l) being then vacuously true.   Indeed for a = 1 we have TNI = 5A/1 =

7P1 = 5P1.   We use capitals for points, lower cases for planes, script capitals

for squares.   For instance the a-square Ji has automatically the points Bi and the

planes  bi with 1 < i < a.

The axioms by configurations, including axioms given earlier, and to be con-

sidered in various later sets, are

Axioms 3TN,  3SN,  3TP,  3SP or 3D. There exists a configuration  TNn,

SNin + 1), TPin + I), SPin + l) or Din + 2)  respectively.

Axiom 4N.   There is only one plane on the first re points of any simplex.

Axioms 6T, 6W or 6P.   // a point 7 is on the re planes, and if a plane t is on

the re points, of a configuration  TNn, SNn or SPn respectively, then  7 ~ /.

Axiom  6D.   Doublenot  in + 2)-squares are impossible.

Axioms 7N, 7P or 7D.   No plane is on the in + l) points of a configuration

SNin + l), SPin + l) or on the in + 2) points of a doublex Din + 2).

Axioms 5N, 8N, 8P or 8D.   Duals of Axioms AN, IN, IP, ID.

We consider the following sets of axioms:

LN, LP, RW, RN, RP defined earlier,

7A/ = !l, 2, 37N, 4, 5, 67!,

TU = il, 2, 37P, 67!, 7P = \TU, 4, 5!,

SW = {1, 2, 3SN, 6W\,

5A/=!l, 2, 3SN,4N, 5/V|,

SU = il, 2, 35P, 7P, 8P!, SP = \SU, 4, 5!,

DU = il, 2, 3D, 6D, ID, 8D\, DP = {DU, 4, 5!.

Instead of Set X of axioms, often we write Axioms {Xj.   The Axioms 6P, 7N,

8A/ do not appear in any previous set, but will be used in proofs.

We shall prove

Theorem Al.  Sets RW and SW are equivalent (and define weak spaces).   Proof

in §3.

Theorem BI.  Sets RN, SN, TN, LN are equivalent (and define simplicial

spaces).   Proof in §§3, 4, 5.

Theorem Cl.  Sets TU, SU, DU are equivalent.   Proof in §§6, 8.

Theorem Dl.  Sets LP, RP, TP, SP, DP are equivalent (and define projective

spaces).   Proof in §§5, 6, 8.

In the last section we study some examples, and discuss independencies

within sets of axioms.
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Theorem D is our main achievement.   Its proof requires all results in this

article, including the theory of W and N spaces.   The longest proofs are Set  TP=*

Set RP and Set DU =» Axiom 6T.   These two proofs have a large common part, in

particular V§2 and 7.   The Axioms 4, 5 have no interest in discussions involving

only configuration axioms (because an identification of undistinguishable elements

is trivial), but they are fundamental when studying reduction axioms (because dis-

tinguishability in the whole space does not imply distinguishability in the reduc-

tions).

We have also

Theorem El.  Any (n + 2) points are the points of a doublex if and only if no

(n + l) of them are coplanar.

Proof.  The proof is easy.   Axiom 1 implies the "if" and Lemma B7 gives the

"only if".    D

Theorem Fl.   For two-dimensional spaces Axioms 1, 2, 3TP, 6P  imply Axiom

6T.

Proof.  The proof of this innocuous theorem is difficult and involves most re-

sults developed in this article.   See Theorem A9.   The proof given there shows

that Axioms (1, 2, 37T, 6P) => Axiom ?>SP fot n-2 only, and that Axioms

(1, 2, 3SP, 6P) =» Axiom 6T for all n.

The Set SN appeared already in [2] and the set (1, 2, 3D, 6T), fot n - 3 only,

appeared in [5].

2. Moving a simplex.  We assume Axioms   \SW\ or \SN\ and prove

Theorem A2.  For every point R and plane r with R ~ r there exists a simplex

9, such that  B(n + l) = R,  b(n + l) = r.

This theorem states the existence of a simplex Jo containing a given set u of

points and planes.   We find S by "moving" a simplex from the starting position

(2, which is the simplex of Axiom 3SN, into the desired terminal position S, by

successive replacements of one point or one plane of (l by one point or one plane

of S.

The notation \ • • -Î- • ■ ! means the finite sequence starting with the term on

the left and ending with the term on the right. Thus [S6 I B8Î = [A2 Î A4! means

B6 = A2, B7 = A3, B8= A4.

Lemma B2.  A permutation of the points of a simplex and the same permuta-

tion of the planes yields a new simplex.

The proof is obvious.

Lemma C2.   No plane is on all points of a simplex  (reworded:    Axiom

6W or 4N =» Axiom 7N).
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Proof.   The existence of a plane / on all points of a simplex d contradicts

Axiom 6W with 7 = Ain + 1), / = /, SNn -\Al] An; a\ } an\, and contradicts

Axioms  AN because / ¡¿ a(re + l).    G

Given a simplex Ct, a point P, and two integers a, ß with 1 < a. < ß < n + 1,

the notation a(a, /3; P) means any plane on the point P and on the (re - l) points

Ai with i ¿ a, i ¿ ß.   We use also the dual notation A (a, /3; p).

Lemma D2.   Under the above hypotheses, at least one plane  b = a(a, ß; P)

exists, and any such plane satisfies either Aa-v b or Aß ~>- b.

Proof.   Trivial consequence of Axiom 1 and Lemma C.    □

Lemma E2.   Given a simplex (Î, a plane r and two integers ß, y with 1 < ß <

y < (re + l), there exists a simplex C such that either Cß ° r or Cy ° r and such

that Ci = Az',  cz = az' for all i £ ß, i' ¿ y.

Proof. We consider the point B = A(/3, y; r) and the plane  b = aiß, y; ß).

Using Lemmas C and C dual, there are four cases:

Case 1.  ß ~ aß,  B ° ay.

Case 2.  B ° aß,  B ~ ay.

Case 3.  ß ~ aß,  B ~ ay, Ay -\- b.

Case 4.  B ~ aß,  B ~ ay, A/3 ~ b, Ay o b.

In Case 1 we obtain C from (l by replacing Aß by B.   In Case 3 we obtain C

from LI by replacing Aß and ay by ß and ¿>.   Cases 2, 4 differ from Cases 1, 3

only by an interchange of ß and y.    G

Lemma F2.   Given a simplex Ct and a plane r there exists a simplex J) such

that din + l) = r.   Moreover Di = Ai,  di = ai for all i such that Ai ° r,  1 < i < re.

Lemma G2.  Area? /'/ A(re + l) ~ r /¿ere D(re + l) = A(re +1).

(Incidentally, Axioms 1, 2, 7AJ, 8A/  imply Lemma F but not G.)

Proof of Lemma F.  We consider three cases:

Case 5. Az ~ r only for z = re + 1.

Case 6.  Az' -v. r only for i = ß where 1 < ß < re.

Case 7. Az ~ r for at least two values of i; say  i = ß, i = y.

In Case 5 we obtain i) from tl by replacing  a(re + l) by r.   In Case 6 we ob-

tain 3) from S by replacing Aß, Ain + l), aß, a(w + l) by A(re + l), Aß, ain + l), r

respectively.   In Case 7 we apply Lemma E repeatedly, until we get out of this

case.    G

Proof of Lemma G.  Let ß, y be the smallest values of i such that Az ~ r.

We consider three cases:

Case 8. ß = re + 1, y does not exist.

Case 9. ß < y = n + I.

Case 10.  ß < y < re.
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Then Case 8 is the same as Case 5.   In Case 9 let B = A(ß, n + 1; r).    Then

B ~ aß by Axiom 6W with T = B, r = a/3, S/Vt? = Ml Î A(/3 - l), A(/3 + l) ÎA(w+l);

al Î a(ß - 1), a(ß + l)} an, r\, or by Axiom 5N with A(n + 1), B distinguished by

r.   Thus, similarly to Cases 1 and 3, the desired simplex is

2) = Ml T A(ß - 1), B, A(/3 + 1) ÎA(t2 + 1); al ] an, r\.

In Case 10 we apply Lemma F repeatedly until we get into Case 8 or 9.    a

Lemma H2.   For any point R there exists a simplex & such that  E(n + 1) = R.

Proof. We use the simplex (l of Axiom 3SN and apply the dual of Lemma F.    D

Proof of Theorem A2.  We apply Lemmas F, G to the simplex of Lemma H.    □

3. Reductions for W and SN spaces.  We prove Theorems Al and the equivalence

RN <=> SN in Theorem Bl.   For a W-space which is not an N-space, see Example

A9.

We use the notations z (= zero), y, n or m affixed to axioms to indicate that

the axioms hold for zero dimension, for one dimension, for the original (7z-dimen-

sional) space or for all reductions (they are  m = n - 1   dimensional) of the original

space respectively.

Lemma A3. Axiom In <=> Axiom \m.

Proof.  The implication Axiom In => Axiom Im is trivial.   For the converse

we make an induction on a, with  1 < a< n, in the statement "on every a points

there exists a plane".   Given a points  [Pi T Paj, by the inductive hypothesis

there exists a plane p on {PI î P(a - \)\.   Either Pa ° p and p is as desired, or

Pa-v p, but then the reduction [Pa, p] contains a plane a on 5PI î P(a - l)i, and

this plane q is as desired.    D

Lemma B3.  Axioms (5SNm, cW or c) => Axiom $SNn.   Conversely Axioms

¡SWn] or \SNn\ =» Axiom 3SNm.

Proof.  The first implication is trivial.   The second implication results from

Theorem A2.    D

Lemma C3. Axiom 6Wn <=> Axiom 6Wm.

Proof. The singlenot 77-square S in Axiom 6Wn and the singlenot Trz-square i>

in Axiom 6Wm ate related by [Al î An, al ] an\ = {öl î B(n - l), R; bl ] b(n - l),

r\.     D

Lemma D3. Axiom 4Nn <=> Axiom 4Nm.

Proof.  The 72-simplex S in Axiom 4Nn is related to the 772-simplex $ in Axiom

4Nm by Ml ] A(n+ l); al î a(n + l)\ = {Bl ] B(n - l), R, Bn; bl}hkn~ l), r, bn\.    D

Lemma E3. Axioms (aW, bW) <=> Axioms \SWz\.
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Proof.  Axiom aW = Axiom 6Wz.   Axiom bW = Axiom 3SNz.   Axiom bW => Ax-

ioms (lz, 2z).    d

Lemma F3.  Axzottzs (a, bN) *=» Axioms \SNy\.

Proof.  Axiom a ==» Axioms (1, 2, 4A/, 5N).   Axioms  (a, bN) —» Axiom 3^N.

(Lemma H2, Axiom 4A/) => (at most one plane on each point).   (This, its dual,

Axioms 1, 2) =» Axiom a.   Axiom 3SN =» Axiom bN.

Theorem G3.   Axioms {SW\ <=> Axioms \RW\.

Proof.  Use (?>SN =» c), Lemmas A, A dual, B, C, E.    G

Theorem H3.  Axioms¡5N\ <=> Axioms \RN\.

Proof.  Use (35A/ =» c), Lemmas A, A dual, B, D, F.    G

4. The 5AJ, TAJ equivalence.  To prove this equivalence we use lemmas, in-

cluding a Theorem D4 which requires the moving of a simplex.

Lemma A4. Axioms \TN\ => Axiom 35A/.

Proof.  Let 3 be the semisimplex of Axiom 37A/ and let A(n + l) be a point

on the re planes of Ct.   For each integer a with  1 < a < re + 1, let ta be a plane on

all points Az except possibly Aa.   Then Aa ^ ha. (Axiom 67).   The simplex % =

{Al Î A(re + l); b\ \ bin + l)S satisfies Axiom }>SN.    G

Lemma B4.  Axzottzs \TN\ =* Axiom 4N.

Proof.  Axiom 67 =» (no distinguishable planes are on the first re points of a

simplex).   Hence (4, 67) =»4/V.    G

Lemma C4.  Axioms 1 and 4N imply:  Given a simplex D and a point R with

R -\. aT, there exists a simplex J> such that BI = R, Bi = Dz /or 2 < z < re + 1,

bl = al.

Proof.  For each integer a with 2<a<re+lwe define ha = d(l, a; R).   Then

Da -N, ¿>a because otherwise al and ha would be two distinct (because distinguished

by R) planes on the last re points of the simplex -D, contrary to Axiom 4N.   The

desired simplex is  S = {/?, D2 Î D(re + l); d\tbl\ bin + l)|.     G

Theorem D4. Axzottzs Í5A/! imply:   For every singlenot a-triangle Ct (/¿e plane

aa may be missing) there exists a simplex % such that Bi = Az for 1 < z < a.

Proof. We make an induction on a.   For a= 1  the theorem is true, by Lemma

H2.   For <x> 1  the inductive hypothesis and a circular permutation gives a sim-

plex £ such that Cz = Ai for 2 < z < a.   Lemmas B2, F2 applied to C and r = al

give a simplex 1) such that d\ = al and Di = Cz for 2 < z < a.   Lemma C with R =

Al gives the desired simplex ,D.    G
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Lemma E4.  Axioms \SN\ => Axiom 6T.

Proof.   Let T, t, TNn = \Al ] An; al î an\ be as in Axiom 67.   By Theorem D

there exists a simplex S such that  [ßl ] B(n + l)\ = \Al] An, T\.   Then  t = b(n + l)

(Axiom 4/V), hence   T "■* t.    D

Lemma F4.  Axioms \SN\ =» Axzottz 4.

Proof.  Let r, s be two distinct planes.   There exists a simplex fe with e(n+ l) =

r (Lemma H2 dual).   At least one of the points {El ] En\ is not on s (Axiom 4N),

hence distinguishes r, s.    d

Theorem (¿4.  Axzoms \SN\ <=» Axioms \TN\.

Proof.  Use Lemmas A, B, B dual, E, F, F dual,    o

5. The nondual theory. We have discussed the Axioms \SN\ in an earlier pub-

lication [2], and gave there a self-dual treatment of flats, but we did not go far

enough to compare Axioms  \SN\ and [EN].   We do it now.   We abandon our empha-

sis on self-duality.   The present results are not used in later sections.

We assume Axioms \SN\.   A set-plane p is defined as the set of all points on

the plane p.   A line, is defined as the intersection of all set-planes containing two

distinct points.   If these points are P, Q, the line is denoted by PQ .

Lemma \5.   In any simplex U, the line A1A2  is the intersection of the planes

!a3 }a(n + l)S.

Proof.   The two points   P = Al, Q = A2, and therefore all points of PQ, ate on

ja3 î a(n + l)S.   Conversely, if R is a point on these planes, and if r is a plane on

the two points P, Q, then  R ° r, because otherwise we contradict Axiom 6T with

T = Q, t = a3, TNn = {A4 ] A(n + l), R, P; a4 T a(n + l), r, al}.   Thus R, being on

all such planes r, is in PQ.    □

Lemma B5.   // R, S are distinct points in a line PQ, then  PQ = RS.

Proof.  There exists a simplex S with Al = P, A2 = Q (Theorem D4).   We may

assume   P 4 S.   Then S ~ a2 (Axiom 5N).   Let 5 = a(l, 2; S).   Then s 4 a2, hence

P ~ s (Axiom 4N).   Thus SB = [P, S, A3 î A(n + l); s, a2 \ a(n + 1)1 is a simplex.

Comparing the planes of S and S, we get  PQ = PS (Lemma A).   Similarly  PS =

«T.    D

Lemma C5.   Lines and reductions to one dimension are identical.

Proof.  Each line   PQ  is the set of points of the one-dimensional space ob-

tained by the succession of the (n - 1) reductions [A3, a3] î [A(tz + l), a(n + l)],

with S defined as above.   Conversely each reduction to one dimension has two

points P, Q (Axiom b/V) and is identical to  PQ.    a
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Lemma D5.  Axioms \SN\ => Axioms (I, UN, III).

Proof.   The definition of a line and Lemma B imply Axioms I and UN.   Let P,

Q, R, S, T be defined as in Axiom III.   Excluding the trivial case of five collinear

points, there exists a singlenot 3-triangle with points Q, 5, P, hence (Theorem

D4) there exists a simplex Ö with Al = Q, A2 = 5, A3 = P.   Then S = {R, 7, P,

A4 î A(re + l); al, a2, 63, «4 î a(n + l)i, for an appropriate plane ¿>3, also is a sim-

plex.   There exists a point (7 on the re planes ia3, ¿3, a4 j a(re + l)i.   This point

U is in Q5 and in RT, as shown by Ct and &.   This proves Axiom III.    G

In any plane satisfying Axioms (I, UN, III) Dembowski defines:   A set s of

points is a subspace if for any two distinct points P, Q in s every point of the

line PQ is in s.   A point A is independent of a set o if there exists a subspace

containing « but not A.   A set w is independent if every point in o is independent

of the remaining points in £>.

Lemma E5. Axioms \SN\ =» Axiom IV.

Proof.  Let Ct be the simplex of Axiom 35A/.   For each integer a with 1 < a <

n + 1 the point Aa is independent of the other points of Ct because aa is a sub-

space containing these other points but not Aa.   D

Lemma F5.   For any simplex Ct and point R, the point R depends on \A\ T

A(re + 1)!.

Proof.  We move a simplex ,& from the initial position Cl into a final position fe

such that  F(re + 1) = R(Lemma H2).   Each new point introduced during this motion

has the form  C = Biß, y; r), hence is on  BßBy (Lemma A), thus dependent on

ißl î ß(re + 1)!.   In particular R is dependent on ißl î ß(re l- 1)! and each ßa is

dependent on  ÍAl ] A(n + 1 )!.   G

Lemma G5. Axioms  \SN\ =» Axiom V.

Proof.  We make an induction on dimensions, by proving that Axioms (Í5A/!,

Vm\) =» Axiom Vn.   Given  (re + 2) points Ml T Mn + 2)\, if \A\ ]A(n + l)i  are

independent then they are not coplanar (Axiom Vm), hence they form a simplex,

and  A(re + 2) depends on them (Lemma F).   This establishes Axiom Vn.   G

Dembowski defines a hyperplane as a maximal proper subspace.

Lemma H5.   The points and hyperplanes of any space LN satisfy Axioms \SN\.

We do not prove this well-known result.

Theorem J5.  Axioms \LN\ <==> Axioms \SN\ and Axioms \LP\ '^Axioms \RP\.

Proof.  The first <=> holds by Lemmas D, E, G, H.   The second <=> holds by

Theorem H3 and because Axiom IIP <=» Axiom bP (Lemma C).     G
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Incidentally, the following theorem is true for simplicial spaces, but not for

weak spaces.

Theorem K5.   Any two reductions  [R, r] and \_S, r] for the same plane r con-

sist of the same point and the same set-planes.

We may denote this reduction by [7].   See Example A9.

6. The  RP ==» TP =>DP implications. We prove

Theorem \6.  The sets of axioms satisfy \RP\ => (\SN\, 35P) =» {TPi => \TU\ =»

\SU\^{DU\.

We use several lemmas.

Lemma B6.  Axioms {RPl =» Axiom 35P.

Proof. We may use Axioms \SN\ (by  RP => RN and Theorem H3).   Let Ö be

the simplex of Axiom 3SN.   The succession of the (n - l) reductions [Al, al] T

M(rz - l), a(n — l)] is a one-dimensional space containing the two points An,

A(n + l) and (Axiom bP) a third point P.   Then  P 4 Mn + l) and Axiom 5N gives

P ~o «Tz, while P 4 An gives P ~ a(n +1).   Thus we have found a point Bn-P satisfying

Btz ° aj tot and only for j 4 n, j 4 n + I.  Similarly, for each integer a with 1 < a< 72, after

a permutation (Lemma B2), we can find a point ßasatisfying Ba°aj fot and only for

j4a, j 4cl+1.  Then S = {ßl } Bn, A(n + 1); al]a(n+ 1)1 satisfies Axiom 3SP.  D

Lemma C6.  Axzoztzs [Tii! =» Axiom 3SP.

Proof.   Let (l be the semidoublex Axiom 3TP.   We construct a doublenot

square C with the same points as U.   For each integer a with 3 < a < n + 1, let

ßa be a point on the n planes aj with ; 4 c - 1, and let r a = a(a- 1, a; Ba) be

a plane on the one point  ßa and on the (n — 1) points Ai with z 7^ a— 1, i 4 a.  The

point ßa and the plane ca exist.   Moreover A (a - l) ~ ca and Aa ~ ca because

otherwise we would contradict Axiom 6T by taking   T = ßa, t = col, TNn = Ml I

A(a- 2), either A(a- l) or Aa, A(a+ l) I A(n + l); al î a(a - 2), aa ] a(n + l)\.

Then  C = Ml î A(n + l); al, a2, c3 T c(n + l)\ satisfies Axiom ÏSP.    o

Lemma D6. Axioms \SU\ => Axiom 30.

Proof.  Let A be the doublenot square of Axiom 3SP.   Let b be a plane on

{Al I A«! and ß be a point on {a2 } a(n + l)\.   Then A(n + l) ~ b and B ~ al, by

Axioms (7P, 8P) respectively.   Also ß ~ b by Axiom 7P with SP(n + l) = {Atz 1

AI, ß; a(n + l) 1 al}.   The desired doublex is {Al I A(rz + l), B; al î a(n+l), b\.   D

Proof of Theorem \6.  It is obvious that {RPi -» \RN\, 3SP — 3TP, \TP\ -*

\TU\, 6T =»(7P, 8P) =^(6D, ID, 8D).   The other needed results are Theorems H3,

G4 and Lemmas B6, C6, D6.    D

7. Moving a doublex.  We assume Axioms \DU\ and prove:
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Theorem A7.   Every doublenot a-square Ct (or Cf p/zzs a point A(a + l) ore ¡all

aaj) can be completed into a doublex.

Integers are taken in the additive algebra modulus (re + 2).   The inequality

a < ß means l<a</3<re+2, and the arrows I or 1 mean in the increasing or de-

creasing cyclical order, starting with the term on the left and ending with the term

on the right.   Thus for re = 4 we have

ÍA2 ÎA4! = {A2, A3, A4\, ¡A2 [A4\ = \A2, Al, A6, A5, A4\,

{A4 î A2| = {A4, A5, A6, Al, A2\,       {A4 { A2\ = {A4, A3, A2|.

When a = ß + 1  the context will make it clear whether iAa i A/3! represents the

empty set or the set of all Az.

Lemma B7.  A?zy doublex Cf and plane r satisfy  Ai ~ r ¡or at least two values

of u

Proof.  Otherwise there would exist an integer a such that Az ° r for z ^ a.

Then Aa ° r is contradicted by Axiom ID, and Aa -\> r is contradicted by Axiom

6D with SPin + 2) = iAa?A(a- l); r, a(a + l) 1 a(a - l)|.    a

Given a doublex Ct and two distinct integers a, ß, the notation a(a, ß) means

any plane on the re points Az with i ¿ a, i ¿ ß. Given a doublex Cf, a point B, and

three distinct integers a, ß, y, the notation a(a, ß, y; ß) means any plane on the

point ß and on the (re - l) planes Ai with i ¡¿ a,  z ¡¿ ß,  i ¡¿ y.

Given a doublex Cf and two distinct integers a, y, a permutation of planes

gives (Lemma C, below) a new doublex S = Ct(ßa, By) defined by

Ba = A(a, y), By = A(a+1, y + l),

iß(y + 1) î ß(a- 1)¡ = {Aiy + 1) T Aia + l)\,     ¡s(a+ l) | ß(y- l)i = iA(y- l) lA(a+ l)!,

{biy+ 1) Tea! = ¡a(y+ l) ] aa\, {bia+ l) } by\ ={ay [aia+ l)\.

If for the point  ßa or By we can use a previously defined point C then we

write C£(ßa= C, By) or Cf.(ßa, By = C).

Given a doublex Cf, a point B and two integers ß, y such that y + 1 ¿ ß ^ y,

B ~ ay, B ~ aiy + l), but B ° aj fot j ¿ ß, j 4- y, / ^ y + 1, we obtain (Lemma C,

below) a new doublex C = Cl(Cy = B, cß) defined by

Cy=B,       cß = aiß- 1, ß, y; ß),

Cz = Az    for i ;¿ y,        c/' = a;    for / ^ /3.

The notations Aia, ß), Aia, ß, y; b), &iba, by), CÎ(C/3, cy = b) ate defined

by duality.

Lemma C7. The two in + 2)-squares % = S(ßa, By), £ = &iCy = B, cß) de-

fined above exist and are doublexes.
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Proof. The points ßa, By exist (Axiom 2) and satisfy the needed ~ (Lemma

B dual). The plane cß exists (Axiom 1), and satisfies A(ß - l) -\- cß, Aß ~ cß,

as we show by elimintaing the other alternatives: A(ß - l) o cß, Aß o cß [s con-

tradicted by Lemma B. A(ß - l) ° cß, Aß ~ cß is contradicted by Axiom 6D with

SP(n + 2) = \Cß î C(ß - 1); cß î c(ß - l)\. A(ß - l) ~ c/3, Aj8 ° cß is contradict-

ed by Axiom 6D with SP(tz + 2) = \C(ß - l) [ Cß; cß 1 c(ß + l)\.    n

Given a doublex Cl and a plane r, we denote by /3(3), y(S), with ß < y, the

largest two integers z such that Ai ^ r.

Lemma D7.   Given a doublex It and a plane r, let ß = ß(&) and assume ß > 2.

Then there exists a doublex m satisfying ß(j$) < ß(d), y(fB) < y (Q), Bi -Ai for

1 < i < ß - 1,  bj = aj for 1 < / < ß.

Lemma E7.  Moreover either y(S) < y (3) or B(ß - l) = A(/3 - l).

Proofs.   Let y = y(Cl),  ß = A(/3, y, y+ 1; r).   We consider three cases.

Case I.  B ~ ay, ß -\- a(y + l),

Cöse 2.  ß ~ aß, B "v ay, ß ° a(y + 1),

Case 3.   B ~ a/3, ß ° ay, B ~ a(y + l).

The doublex J) satisfying Lemma D is

Case 1. % = &(By= B, bß),

Case 2.  $ = CtXß/3 = B, By),

Case 3. ÍB = S(ß(/3 - 1), ßy = ß).

Moreover we get y (S) < y (S.) in Cases 1 and 3, and we get ßz = Ai tot 1 < i < ß

in Cases 1 and 2.    a

Lemma F7.   Given a doublex (l, a pzWe r flTzfi? atz integer 8, there exists a

doublex £ such that ß(£) < S,  Ci = Ai for 1 < i < S,  cj = aj for 1 < / < 5.

Lemma G7.   Moreover either y(C) < n + 2 or C<5 = Ad.

Proofs.   If /3(CÍ) > 8 we apply Lemma D repeatedly until we get a doublex C

with /3(C) < 8.   This proves Lemma F.   Moreover Lemma E implies Lemma G.    D

Lemma H7.  Given a doublex it, a plane r and an integer a such that Ai ° r

for 1 < z < a, r^ere exists a doublex 3) s&c£ /¿a/ d(a+ l) = r,  Di = Az for 1 < z < a,

«7 = aj for 2 < j < a.

Lemma J7.   Moreover if Aa ~ r then Da - Aa.

Lemma K7.   Or if A (a + l) ~ r then dl = al.

In the following three proofs, let  ß = ß(&, y = y(C).

Proof of Lemma H.   Let £ be the doublex of Lemma F for 8 = a.   Then ß = a,

r = c(a, y).   The desired doublex is  5) = C(d(a + l) = r, d(y + l)).     D
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Proof of Lemma J.  Let C be the doublex of Lemma F for 8 = a + 1.   If ß = a

the desired doublex S) is as defined in the proof of Lemma H.   If ß = a + 1   then

the desired doublex is 5) = (2(Dy, dia + l) = r).    a

Proof of Lemma K.  If Aa ° r we look at the proof of Lemma H.   We have

Ca ~ r, hence  Ca ¡¿ Aa, and Lemma G gives y < n + 2.   Then y + 1 ^ 1 and dl =

cl = al.   If Aa -v r we look at the proof of Lemma J.   Either  C(a + 1) o r, then

C(a + 1) ¡¿ A (a + 1), hence again y < re + 2, or  C(a + 1) ~ r, then dj = cj fot

i ¿y.   a

Lemma L7.  Given a doublex (b, a point R and an integer a such that R ° ej

for 1 < j < a, there exists a doublex J" such that  Fa - R,  Fi = Ei and fi = ei for

1 < z < a.

Lemma M7.  Moreover if R ~ ea then fa = ea.

Proofs.  These two lemmas are obtained from Lemmas H, J by the duality

Ai —< ei, a(i + l) —» Ei, r —* R.    G

Lemma N7.   For any point R and plane r with  R ~ r there exists a doublex JÚ

with Dl = R,  dl = r.

Proof. To the doublex fe of Axiom 3D we apply Lemma L with a = 1 to ob-

tain a doublex J" with FI = R, ana to the doublex J" we apply Lemmas H, J with

a = 1  to obtain the desired doublex i).    G

Proof of Theorem A7.  We refer to this theorem by Aa without the parentheses

and by Aa+ with the parentheses.   We make an induction on a.   Theorem Al is

true, being the same as Lemma N.   Now we assume Theorem Aiß — l).   Let Cf be

a doublenot /S-square, and let z mean all z in 1 < z < ß.   The inductive hypothesis

gives a doublex ÍB with ßz = Az,  bi = ai.   Lemma L for a = ß gives a doublex C

with  Ci = Bi,  Cß = Aß, ci = bi.   Lemmas H, J, K for a = ß - 1  give a doublex 5)

with Di = Ci, di = ci, dß = aß (but D/3 ¡¿ Aß).   Lemmas L, M for a = ß give a

doublex & with Ei = Di,  Eß = Aß,  ei = di,  eß = dß.   The existence of & proves

Theorem Aß.   This completes the induction.   The existence of C proves Theorem Aa + .   a

8. The  DP => RP implications. We prove

Theorem A8.  Axzottzs {DP\ =* Axioms {RP\.

Theorem B8. Axioms {DU\ => Axzottzs 67.

We use most previous results and additional lemmas.

Lemma C8. Axioms {DU\ =■» Axiom 6P.

Proof.  The doublenot re-square Ct = SPn plus the point A(re + l) = 7 of Axiom

6P can be completed into a doublex A (Theorem A7).   Hence   7 ~ /  (Lemma B7).    G
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We recall that n means for the original space, 772 means for all reductions

LR, r\, and y means for one dimension.   We assume 72 > 2.

Lemma D8. Axiom 6Pn "■» Axioms (6Dm, IDm, 8Dm).

Proof.  The SP(m + 2) = {Al î A(rz + l); al ] a(n + l)\  in Axiom 6Dm cannot

exist, by Axiom 6P72 with T = A(n + l),  t = r, SPn = {Al f An; al ] an\.   A plane

p in LR, r] on the m-doublex D is Axiom IDm cannot exist, by Axiom 6Pn with T -

R, t = p, SPn = \Dl ] Dn, dl ] dn\.   Duality gives Axiom 8Dm.    a

Lemma E8.  Axioms \DUn\ =» Axiom 3Dm.

Proof.   Given P, r with P ~ r there exists a doublex íl with Al = R, al = r

(Lemma N7).   Let ß = A(2, n + 2),  b = a(2, 72 + 2).   The desired ra-doublex is {A2Î

A(tz + l), B; b, a3 î a(n + 2)1, noticing that ß ~ b by Axiom 6£>z?2.    D

Lemma F8.  Axioms {DP72S => Axiom 5m.

Proof.   Let P, Q be two distinct points in a reduction LR, r], where distinct

means distinguishable by a plane s in the original space (Axiom 5n).   The case

R °s being trivial, we assume  R ~ s.   Then the doublenot rectangle [R, P, Q;

r, s\ can be completed into a doublex m (Theorem A7).   The plane  b4 is in [R, r]

and distinguishes P, Q.     a

Lemma G8.  Axioms {DPyl =» Axioms (a, bP).

Proof.   Lemma C for n = 1 becomes \DUy\ => 6Ty.   We have also 3D => 3TN.

Hence {DPyl ==> \TNy\ => (a, bN).   Moreover 3£>y =» bP.    D

Proof of Theorems A8 and B8. We get Theorem A8 from Lemmas C, D, E, F,

F dual, G.   We get Theorem B8 from Theorems A8, H3, E4 and by defining dis-

tinct to mean distinguishable in the original space.    D

9. Counterexamples   and weaker axioms.   First we give one example of a non-

simplicial weak space and two examples of nonprojective simplicial spaces.

Example A9. We consider the space of five points and five planes with the

following incidence table

This space satisfies Axioms \SW\ fot n- 2, but not Axiom 6T (take  T = A,  t a,
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7A/2 = iß, E; e, b\).   The distinguishable points A, E are not distinguishable in

the reduction [ß, e].   The reduction IB, e] satisfies neither Axiom 37P nor Axiom

5, while the reduction LC, e] is projective.   Thus Theorem K5 fails.    G

Example B9.   The space consisting of a simplex only is simplicial but not

projective.    G

Example C9.  Let J and =¿ be two projective spaces.   We declare that each

point of J is on all planes of J-, and that each point of J- is on all planes of J.

We form thus a new space R, which we call the join of J and J-.   This space R is

a nonprojective simplicial space, with dimension re - a + ß + 1, where a and ß

ate the dimensions of J and °l.

Proof.  The join R satisfies Axioms (1, 2, 35A/, 4, 5, 67), but the lines join-

ing any one point of J to any one point of J. have only two points.   Thus Axiom

bP is not satisfied.    G

We say that an Axiom A can be weakened within a set {A, B, C, • • • \ of axioms

if there exists an Axiom A   , which does not imply A, such that iA   , ß, C, • • • |=»A.

Theorem \9.  Axiom 67 can be weakened within Axioms {TP\ by an additional

incidence specification.

The added specification is 51 ~ s2 for the semisimplex o in Axiom 67.

Proof.  Using this weaker Axiom 67 , the proof of Lemma C6 remains valid

with c3 = a(2, 3; B3) if Al -\. a3 and with c3 = a3 if Al ° a3.   Thus we proved Ax-

iom 35P, hence Axioms {SU\, {DU\ (Theorem A6) and Axioms 67 (Theorem B8).    o

Theorem B9.  Axiom $TP cannot be weakened within Axioms {TP\ by deletion

of an incidence specification.

Lemma C9.  Given two integers a, ß with l<a<ß<n+2, Axioms {Dil\ imply

the existence of an in + l)-square fi which is doublenot except that Bß ~ ba.

Proof of Lemma C.  Let Cl be a doublex, let  P = A(l, a + l), p = a(l, ß). Then

P ~ p by Axiom 67 (proved in Theorem B8) with  7 = P,  / = p,  7Pre = }A2 î Aa,

Aiß-l) I Aia + 1), Aiß + 1) I A(n + 2); «2 î aa, aß I aia + 2), aiß + l) î a(re + 2)!.

The desired (re + 2)-square fi = {A(a- l) 1 Al, P, A(a+ l) î A(re + 2); aa ja2, p,

a(a+ 1) } ain +2)!.     a

Proof of Theorem B. When J  and J- ate projective spaces or zero-dimensional

weak spaces, then their join ÎL in Example C satisfies the Axiom 35P'obtained

from Axiom 3SP by deletion of any one of the three specifications A(a + l) ~

a(a+ l), A(a+ l) ~ a(a + 2), A(a+ 2) ~ a(a + 2).   The Axiom 3SP" obtained from

Axiom 35P by deletion of any one Aß oaa, for  1 < a < ß < re + 1, is satisfied by

any (re - l)-dimensional projective space J (Lemma C), and hence by the join R

of J with a zero-dimensional weak space J..   Thus neither Axioms (¡TA/j, 3^P )

nor Axioms i{TN\, 3SP") imply Axiom bP.    G
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