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INDUCED FLOWS

BY

KARL PETERSENÍ1) AND LEONARD SHAPIRO(2)

ABSTRACT. The construction of induced transformations is considered in the

setting of topological dynamics.   Sufficient conditions are given for induced

flows to be topologically weakly mixing, and it is proved that Toeplitz flows

and certain Sturmian flows satisfy these conditions and give rise to new and eas-

ily constructed classes of flows which have entropy zero and are uniquely ergodic,

minimal, and topologically weakly mixing.   An example is given of a weakly mix-

ing minimal flow which is not topologically strongly mixing.

1. Introduction.  S. Kakutani (oral communication) has constructed examples

of induced measure-preserving transformations on Lebesgue spaces which are

weakly mixing but not strongly mixing.   By beginning with a doubly infinite se-

quence x on the symbols 0 and  1  and doubling the  l's in x, one obtains a new

sequence x   ; Kakutani proved that if x is a particular Toeplitz sequence or one

of many sequences of Sturmian type, then the orbit closure  X     of x     under the

shift a is minimal and uniquely ergodic and the measure-preserving transformation

a: X       » X     is weakly mixing but not strongly mixing.   Related examples are

found in [14, §8].   It was already known to von Neumann [21,  §Vl] that one

could construct a measure-preserving transformation with continuous spectrum from

one with pure point spectrum by using induced transformations.

The concept of induced transformation 113] can be carried over from ergodic

theory to topological dynamics.   By a flow we mean a pair A = (X, T), where  X

(called the phase space) is a compact Hausdorff space and T: X_ —► X  is a homeo-

morphism.   A flow X = (X, T) is said to be minimal if for each x £ X  the orbit

U(x) = {T"x: n £ Z} is dense in X.   If A. = (X, T) is a minimal flow and X is the

disjoint union of a finite number of closed sets, then both primitive flows  %    and

derivative flows %A  oí A (both called induced flows) can be defined.   These in-

duced flows are again minimal, and under certain conditions they are topologically

weakly mixing.
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In   §§ 2 and 3 we show how to construct the two types of induced flows and

give sufficient conditions for them to be topologically weakly mixing.   We also

observe that inducing from a given flow preserves unique ergodicity, minimality,

expansiveness, and equicontinuity, and allows an easy computation of the topolog-

ical entropy of the resulting flow.   In §4 we define two classes of examples, the

Sturmian flows and the Toeplitz flows (these include the examples considered by

Kakutani).   We show that these flows satisfy the sufficient conditions of §§2 and

3, so the flows induced by them are uniquely ergodic, topologically weakly mixing,

and minimal.

In §5 we show that the particular Toeplitz flow considered by Kakutani has a

derivative which is topologically weakly mixing but not topologically strongly

mixing.   We also mention in §6 an application of the foregoing results to a ques-

tion concerning the irregularities of distribution of the fractional parts of multiples

of irrational numbers.

Before proceeding we recall some common definitions.   Let X = (X, T) and

y = (Y, S) be flows.   We say  (p is a homomorphism from X to A,  written  tp: X —> p,

if f/>  is a continuous map from X  to   Y  such that S°<ß = cf>°T;  (p is an isomor-

phism if <f>: X —> Y is also one-to-one and onto.   Let K denote the compact group

of complex numbers with absolute value one, and if rf e K then define  T r: K —' K

by Tgiß) = ff/S for ß £ K.   Let K ç denote the flow  (K, T^).   A continuous func-

tion /: X —>K   is called a continuous eigenjunction of X with eigenvalue  rf if

/ is a homomorphism from X to K.¿ ,  i.e. f(Tx) = zf/(x) for x £ X.   The flow

X x j is defined to have phase space X x Y  and homeomorphism  T x S,  where

(T x S)(x, y) = (Tx, Sy).   X  is said to be (topologically) ergodic if whenever

A C X, A   is closed, and T(A) = A, then either A = X or A  is nowhere dense.   X

is (topologically) weakly mixing if   X x X is ergodic.   It has been proved [22] that

if X is minimal then  X is weakly mixing if and only if it has no nontrivial equi-

continuous homomorphic images.   Now any nonconstant continuous eigenfunction

of X provides a nontrivial equicontinuous homomorphic image of X .   Conversely,

if ¿) = (Y, T) is a nontrivial equicontinuous homomorphic image of X,  then Y is

a compact abelian group [4, Remark 4.6.2], and any nontrivial character of Y will

give rise to a nonconstant continuous eigenfunction of X.   Thus X is weakly

mixing if and only if every continuous eigenfunction is constant (cf. [l6, Corollary

2.11]).

Two points x, y £ X are said to be positively (or negatively) proximal in case

there is z £ X and a net [nj of positive (or negative) integers such that

T    x —> z  and  T Ty —» z.    If x  and  y  are both positively and negatively proximal,

then they are said to be doubly proximal; if x  and y  are either positively or nega-

tively proximal, then they are said to be proximal.   The co-limit set of x with
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res pect to T is defined to be the set of limit points of \Tnx\ n > 0|.   Clearly x

and y ate positively proximal if and only if A n 0 / 0, where A is the diagonal

of X x X and 0 is the w-limit set of (x, y) with respect to T x T.

In the hope that the wide range of this paper may make it a suitable introduc-

tion to current work in the field, the authors have tried to keep the paper as self-

contained as possible.   For background information the most basic works are [4],

[6], and [9].   We are grateful to Professors H. B. Keynes and N. G. Markley for

several helpful conversations.

2.  The primitive of a flow.  In this section and the following one we deal with

the topological analogues of the ergodic-theoretic constructions discussed in L13l-

Let X = ÍX, T) be a flow, N  a positive integer, and u: X — {l, 2, • • • , N\ a

continuous function (il, • • • , N\ has the discrete topology).   We will use the func-

tion u  to define a new flow X" = (X", T"), called the primitive of % with respect

to  u.   For T2 = 1, 2, •• • , N, let X° = u~l{n\.   For each n = 2, • • • , N and i =

1, 2, • • ;, n- 1, let X'   be a homeomorphic copy of X^, and suppose cV : X^ —»X^

is a homeomorphism for n = 2, • • • , N  and i = 0, 1, • • • , n - 2.   Let  <pj  be the

identity map on xj, and for n = 2, • • •, N let <p*~ l: X*-1 —» X° be the inverse

of the map cbn~2 ° • • - ° cb   ° cb°.   Let X" denote the discrete union of the sets

X¿   for 77= 1, 2, ...,/V  and z = 0, 1, ...,«- 1.   We define  T": X" -^ X" by

T"x =

cblx it x £Xl   and z < tz - 1,
7  n 77

T(cá"_1x)    if x eX1'   and  z' =n - 1.
Tn 72

Then  Tu is a homeomorphism and clearly  X    is minimal if and only if X is mini-

mal.   The formation of A    in the case N = 2  is illustrated by the following dia-

gram, in which the action of T on X  is represented by solid arrows and the action

of T" on X"  by dashed arrows.

.1

Note that y = T2x = (T")3x.

Theorem 2.1. X has a continuous eigenfunction with eigenvalue £ if and

only if there is a continuous function f: X —> K such that /(Tx)//(x) = £uf-x> for

all x £ X.
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Proof.   If g   is a continuous eigenfunction of X    with eigenvalue  ç,  then let

/ be the restriction of g  to X Ç X".   It is easily checked that f(Tx)/f(x) = <f "(x)

for all x e X.

Conversely, given a continuous function /: X —> K with (/ ° T)/f = ¿f ", define

g: X" -+K by

I f*A(*Í" ' ° • • • ° ̂ °tf" '*)   if x ex;  and i > 0,
g(x) =

\f(x) ifxeX°ÇX.

Then clearly g is continuous and g(Tx) = <fg(x) for all x e X".

We can now state a condition which will ensure topological weak mixing of the

primitive of a minimal flow.

Theorem 2.2.  Let X = (X, T) be a flow,  N a positive integer, and u: X —>

il, 2, • • • , íV¡ a continuous function.   Suppose there is a pair of doubly proximal

points x, y £ X such that  \u(x) - u(y)\ = 1 and u(T"x) = u(Tny) for n / 0.   If g

is a continuous eigenfunction of X    with eigenvalue  rf, then  ç= 1.

Proof.  By Theorem 2.1 it suffices to prove that if /: X —* K is continuous

and f °T/f = rf", then rf = 1.   Now for n > 1,

f(T"x)        f(T"x)   f(Tn~lx)

fix)        fiTn-lx) fiTn~2x)

fiTny)    f(Tn~ly)

fiTn-ly)fiT"-2y)

By letting n  tend to infinity along the net of positive integers mentioned in

the definition of doubly proximal, we conclude that fiy) = £" y       ^x'fix).   A simi-

lar calculation shows that, for 72 < 0,

fix)/fiTnx) = fiy)/fiT"y);

then using the fact that x and y  are negatively proximal, we conclude that fix) =

fiy).   If follows that  1 = «f "<y>-"<*> = f*1, and hence f = 1.

Remarks. The rather special hypothesis of this theorem can be weakened in

several ways.

2.1. Suppose that there are a pair of doubly proximal points x, y £ X and non-

negative integers r, s  such that u(T"x) = uiT"y) unless -r < n < s.   If

\^A_T [u(Tnx) - zz(T"y)]| = 1,  then it still follows that X" has no continuous

eigenfunctions with eigenvalues other than 1.

2.2. Suppose there are a pair of doubly proximal points x, y £ X and a num-

ber M such that 0 < \2".^Q [u(tA) - a(Tly)]| < M for all 72. Then a modification

of the proof of Theorem 2.2 shows that if g  is a continuous eigenfunction of   X"

f(Tx)

*"   fix)

..J{Ty] euM-«ix)_i{T"y) £»(>>-«(*)

f(y) f{y)
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with eigenvalue  £,  then  £ is a &th root of unity for some  k  with 0 < k < M.

3. The derivative of a flow. As is the case with the induced transformations

of ergodic theory, the above construction of the primitive of a flow determined by

a function can be reversed.

Let X = (X, T) be a flow, and suppose A   is an open-closed subset of X  such

that for each x £ A   there are a positive integer tz and a negative integer ttz  for

which T"x £ A  and Tmx £ A  (such a set A  will be called doubly recurrent).   We

will define a new flow X. = (A, TA), called the derivative of X with respect to

A, by letting  TA: A  —'A  be the "first return time" transformation; that is, TA

maps each point x of A  to the first point of Tx, T x, • • • which is in A.   More

precisely, let A ° = A OT_1A,  A° = A  O T~2A - A °, . .. , A ° = A O T""A -

(A j U ... U A      j), •••.   Then A C U^= j An;   since A   is compact, there is a

smallest ,V  such that An = 0  tot n > N;  and A   is the disjoint union of A°, A°,

• • • , A°.   Now we define  TA: A — A  by TA | A° = T", n = 1, 2, • ■ • , N.   Again

T^ is a homeomorphism, and X^  is minimal if and only if X is minimal.

Let us define uA: A — Í1, 2, • • • , N\ by uA | A° = tz  for n = 1, 2, • • • , N.

Then the primitive   (XA)       of XA  with respect to the function zz^  is isomorphic

with X.   Similarly, if we start with a flow A = (X, T) and a continuous function zz

from X  into a finite set, then, regarding X as a subset of X", we see that (Xu)x

is isomorphic with X.   For a given flow X, a primitive or derivative of X is

called a //otzz induced by  X.

Theorem 3.1.   XA  has a continuous eigenfunction with eigenvalue  £ if and

only if there are a continuous function f: X —» K and £y, £2, • • • , £N £ K such

that  £"n = £ for n = 1,2, ■■■ ,N and f °T/f = £n on A ° U TA ° u • • •  uT^M",

77 = 1, 2, ....-V.

Proof.   Similar to the proof of Theorem 2.1.

Theorem 3.2.  Let X = (X, T) be a minimal flow and A  an open-closed subset

of X (so A  is automatically doubly recurrent).   Suppose there is a pair of doubly

proximal points x £ A and y £ X - A such that,   for n / 0,  T"x £ A  if and only

if T"y £ A.   If g  is a continuous eigenfunction of J..   with eigenvalue  £, then

f=l.

Proof.  Suppose f: X —» K is continuous and £y £2, • • • , £N £ K are such

that £" = £ and / ° T//= £    on A0 uTA° U...   UT"_1A°  tot n = 1, 2, ■ • ■ , N;

because of Theorem 3-1 it suffices to prove that £ = 1.

Let Aln = T'A°n for i = 1, 2, ■ • •, tz - 1, n = 2, 3, • • • , A/.   Suppose x e A^;

then we must have y e A    ,,   for some k with  1 < k < N - m.    Because T'x £ A
J m+k —      —

if and only if T'y £ A   tot j > 0,  for j > m  the two points  T'x  and T'y  must lie

in the same cell A1 ...  of X.   Similarly, for j <-k  the points T'x and T'y lie
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in the same cell A' ... of X.   Therefore
72(7)

f(T'x)                         fiTiy)
-= ç  ,.. =-for 7 > 722   or 7 < - k.
f(V-'x)     ~nU)     f(V~ly)

On the other hand,

and

f(Tmx)          f(Tx) fiTmy)          fiTy)
-. . . - = ¿f'" = F,      but      -— • • • -= Ç      , ;
f(Tm-lx)           fix)          ~m fiTm~ly)            fiy)           m+k'

fiT-^x)          fix) f(T-^y)            fiy)
ç. = ç,      but     —;-—— • • • —-— = ç„

f(T~kx) l(T~lx)       k f(T~ky) f(T~ly)       m+k

(The latter statement holds because  Tky £ A0      C A  and T^y 4 A  for 0 < 7 < k,

so T~kx eA   and T~'x 4 A  for 0 < 7 < k; therefore, since  TkiT~kx) = x £ A,

in fact T~kx £ A°.   It follows that T~k + lx £ TA°k = A\, T~k + 2x £ A\, . . . ,

T~lx £ Ak~l.)
k.

As in the proof of Theorem 2.2 we may compute that, for large enough 7,

fiVx) £     fiVy) fix) B        fiy)
and

W      Cu   fV AT"'*)   ^+,AT"'y)

Using the fact that x and y  are doubly proximal, we conclude that

Ay) = ¿A*)/C*   *"d  flv)-C„iß*)/{.

Therefore  f2 = tkm+kC+k = ^m+ï = ^ and  f = 1.

Remarks. 3.1. If X is a minimal flow and /  is a continuous eigenfunction of

X with eigenvalue 1, then / is constant.   Thus if X is minimal and  (a)(A)  satis-

fies the conditions of (Theorem 2.2) (Theorem 3.2), then   iX )iX^ is topologically

weakly mixing and minimal.   We will consider specific examples in the next section.

3.2.  A flow «X = (X, T) is said to be uniquely ergodic if there is a unique

Borel probability measure p on X  which is invariant in the sense that piT~  E) =

piE) for each Borel subset F of X.   X is expansive ii there is an index  a of the

uniformity of X such that given x, y £ X with x / y, there is an integer 72  for

which  (T"x,  Tny) 4 a-  A  is equicontinuous if  \T": n £ TA is a uniformly equi-

continuous family of maps X —> X.   Straightforward arguments show that if X is

(uniquely ergodic) (expansive) (equicontinuous), then so is any flow induced by «X.

3.3-  For a given flow X, let %iX) denote the collection of all T-invariant

Borel probability measures on X.   It follows from [l] and [7] that, denoting by

hiX)  the topological entropy of a flow X (see [2] fot the definition),  h(X) = h(X .)

sup   M(X.piA) fot any doubly recurrent open-closed subset A   of X.   From this it

follows that if hiX) = 0 then hiX") = 0 and hiXA) = 0 if piA) > 0 for some p £

%iX).
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4. Examples. If we are interested in finding flows which satisfy the hypoth-

eses of Theorems 2.2 and 3.2, then zero-dimensional flows, especially the sym-

bolic flows, are obvious candidates.

Let S = |0, l\Z be the space of all bilateral sequences x = • • • x(-l) x(0) x(l) x(2)

• • •  on the symbols 0 and 1.   When    Í0, 1\   is given the discrete topology and

S  the corresponding product topology,  S  becomes a compact zero-dimensional

metrizable space with compatible metric dix, y) = ik + l)~   , where k = infi|n|:

xin) /= y(Tz)¡.   The shift transformation  a: S —» S is defined by iax)in) = x(tz + l).

Then a is a homeomorphism and o - ÍS, a) is a flow.   If X C S  is closed and

aX = X,  then X = (X, a)  is also a flow; such flows  X ate called symbolic flows.

For more details concerning symbolic flows, see L9, Chapter 12].

An n-block, tot some positive integer T2, is an element of {0, l\".   If x £ S

and B  is an «-block, then the phrase B appears at the kth place in x means that

x(ze)x(& + l) • • • xik + n - l) = B.   An TZ-block B   is said to be the initial n-block

of an element x £ S if B  appears at the Oth place in x.

Now let x £ S, let X = U(x)~ be the orbit closure of x under the shift a,

suppose X = (X, a) is minimal, and let B be a block which appears at some place

in x. Let A ={y £ X: B is an initial block of y!, and define zz: X —> il, 2Í by

u | A = 1 and u | (X - A) = 2. Then from the flow X we may form the induced flows

<a and XA. In the case when B is the 1-block 0, the transformation T.: A —> A

consists of "shifting to the next zero;" the primitive flow X in this case is iso-

morphic to the symbolic flow (0(x )~, a), where x' is the sequence obtained from

x by "doubling ones". iXA can also be realized as a symbolic flow.)

Let B  be the 1-block 0 and let u and A  be as above.   Then for certain

choices of x £ S, X = (U(x)_, a) will be minimal and will satisfy the conditions

of Theorem 2.2 and Theorem 3.2.   Such is the case if x is a Sturmian sequence

(Example 1) or a Toeplitz sequence (Example 2).   Thus in these cases the induced

flows  X     and  X .   are minimal and topologically weakly mixing.   For a particular

Toeplitz sequence  x we will see (§5) that the derivative  XA  is not topologically

strongly mixing.

The Sturmian and Toeplitz flows, which are of fundamental importance in

topological dynamics, have been discussed by many authors using a variety of

approaches.   For the sake of completeness and clarity we will give a detailed con-

struction of these flows via elementary techniques, using a method similar to [25J-

Example 1. Sturmian flows.  Since we prefer additive notation in this example,

we take the circle group K to be [0, 1), with addition modulo one.   Unless stated

otherwise, all real numbers will be reduced modulo 1 and taken to be in [0, 1).   A

metric in K is given by diy, y ) = min! |y-y'|,l-|y-y||.  Note that if p, q £ K

with  p < q, then there are two closed intervals   with endpoints p  and q,  namely
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[p, q] = [r £ K| p < r < q] and [a, p] = \r £ K| a < r < 1  or 0 < r < p\.   Intervais

such as  [p, a.) and (a, p] ate defined similarly.   For a set A,  ^  will denote the

characteristic function of A.

Let  a be irrational and ß £ (0, 1).   Define /: K —>(0, l! by fiy) = X[0 ß]iy),

and for n £ Z define xq(t2) = fina.), so xQ e 5.   The flow X = (0(x0)~, ff) is

called a Sturmian flow of type  (a, ß).   These flows are related to the Sturmian

minimal sets [10].   Sturmian flows are special cases of the flows considered in

[19], [24].

Let Tiy) = y + cl for y £ K,  so X = (K, T) is a minimal flow.   We now assume

that ß 4 Za, because we are interested in this case for our applications.   We note

that if /3 e Za then a Sturmian flow of type  (a, jS) is not minimal, though it would

have been minimal if we had chosen, in place of [0, ß], an interval /  such that

(Za) <~) dl = 0, where d denotes boundary.

Theorem 4.1.  There is a homomorphism  p: X     'K. such that (a) p~  [y\ is a

singleton unless  y £ E = (Za) U iß + Za); (b) for each  y £ E,  p~ [y\ consists

of exactly two points; (c) p~  \0\ - [x 0, x x\, where x,(0)/xQ(0) but x An) - x An)

for n / 0; (d) if p(x) = p(x ), then x and x    are doubly proximal.   In addition,

(e) X z's minimal.

Proof.  Define pianx A -nd.   To show that p can be continuously extended

to 0(xQ)_  it suffices to show that Cauchy sequences in Gix A ate mapped to

Cauchy sequences in K.   Therefore we assume that nik) ¡s a sequence with

ia"(   xQS convergent to x j  e S  and let  a^, a2  be cluster points of  [nik)a\, and

we will show  a-x = a2.   Now for 22 e Z we have /(a, + na.) = /(a2 + nd) = xAn)

if / is continuous at a   + 72a and  a   + 72a,  i.e. unless  a   + 72a or a   + 72a is 0

or   ß.   Thus fiy) = /((a [ - a2) + y) for a dense set of y £ K,  which implies that

a   - a, = 0.

Thus  p can be extended to all of 0(xo)~.   The extension is clearly unique,

and it is a homomorphism from  1 to i  since p ° ff = T ° p on the dense set U(x0).

(a) Now we show that p is one-to-one except at the orbits of the points of

discontinuity of /, denoted F.   We define a continuous function e: 0(xQ)- —> ¡0, 1,

by eix) = x(0).   Then e(ff"xQ) = x0(t2) = /(p(ff"xQ));  it follows that if p(x) is a

point of continuity of /, then e(x) = /(p(x)).   Now suppose p(x) = p(x ) 4 E,  and

let 72 £ Z.   Clearly p(a"x) = p(anx ) 4 E,  and therefore p(a"x) is a point of con-

tinuity of /.   Now choose a sequence  StzU)! such that ff"x = lim,ff"(   xQ.   Then

f(p(onx)) = limfe/(p(ff"U)x0)) = limkxQ(nik)) = xin).   Similarly,  fipic/"x')) = x'in),

so xin) =x in), and thus x =x ,  as desired.

(b) Since there are points of K - E  arbitrarily close to 0 £ K where / assumes

the value  0,  and points of K - F  arbitrarily close to 0 where / assumes the

value   1, and the continuous function e: 0(x0)~ —► i0, 1\ coincides with / ° p on
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the set p_1(K - F), p~'iO! contains two points x, x    such that x(0) = 0 and

x'(0) = 1.   We will show that x(j) = x'(z') for / /■ 0,   so p~ Mû! contains exactly two

points.   Now ja = pia'x) = pia'x') is a point of continuity of /,  so xij) = eia'x) =

fipia'x)) = fipia'x')) = eia'x) = x'ij).   Similarly, p is two-to-one at  ß.   Since p is

a homomorphism, p is two-to-one on E.

(c) This follows from the proof of (b).

(d) Assume  p(x) = p(x'); we will show that x  and x    are doubly proximal.

Since  {na; tz > 0! and ärza: tz < 0¡   are dense, we can choose a sequence {nik)\

of positive (or negative) integers such that  limfe [pix) + nik)a] = y 4 E, and re-

fine ÍtzGÜS so that z =limka"^x and z' = limfe a"(k)x' both exist.   Then piz) =

piz ) = y i E,  so z = z    as desired.

(e) It remains to show that X is minimal.   By Zorn's Lemma, there is a sub-

flow M C0(x.)"  such that (M, a) is minimal.   Since K is minimal, it follows that

piM) = K.   Thus there is some point mQ £ M  such that pizrz  ) = p(xQ).   If ttzq = xQ

then we are done, for then ©(x.)" C M   so 0(x0)~ = M.   Suppose then that mQ = x¡,

where x^  is as in part (c).   We will show that xQ £ Qix ^)~,   so that U(x0)~ C

Qim A)~ = M ,   as desired.    From part (c) it is clear that x,(0) = 0 and

xyin) = x0(tz)  for n / 0.   Now form a sequence  {nik)\ such that Tz(ze)a 6 (0, ß) for

all k,  lim^^ nik)a = 0, and {anlk)x x\ converges, say  lim^^ an(-k)x   =x.   Now

we need only show that x = x„  to complete our proof.   But

p(x)=   lim pio"(k)xA=   lim pian(k)x0)=   lim nik)a = 0 = pixQ),
fe-oo /fe-oo ze^~

and

x(0)=   lim  o"{k)Xy(0)=   lim x yinik)) =    lim x0(tzU))
fe- oo k^ oo ¿—oo

=   lim  vv     .-,(Tz(/e)a) =   lim   1=1.

By  (c) x =x„  as desired.

Corollary.   The flow X is uniquely ergodic.

Proof.  A  is uniquely ergodic because of the uniqueness of normalized Haar

measure, which we denote by v.   It p. is a Borel probability measure on X which

is invariant under a then pip), defined by pip)iß) =/¿(p-I(B)), is an invariant

measure on K  so pip) = v.   Thus p: (X, u) —» (K, v) is a measure-theoretic isomor-

phism because it is one-to-one except on the countable, zero-measure set E.   There-

fore X is uniquely ergodic.

From Theorem 4.1(c) and Theorems 2.2 and 3.2 we see that if we set uix) =

1 + eix) and A = u~  {l\, then the primitive X    and the derivative X.   of
A a

Sturmian flow X of type  (a, /3), where  a is irrational and ß 4 Ta,  are topolog-

ically weakly mixing and minimal.   Previously Katok and Stepin [14] and Kakutani
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(oral communication) have proved that the primitive X    is measure-theoretically

(and therefore topologically) weakly mixing for certain choices of a and ß.

Example 2. Toeplitz flows. For this example K is replaced by the group of

2-adic integers, denoted G (the construction could as well be carried out with G

equal to the inverse limit of any totally directed set of finite cyclic groups). G,

being the inverse limit of cyclic groups of order 2",  consists of sequences

oc

« = (g0'«i'«2''--)eIH°. l,"-,2!'-lS
2 = 0

such that g. s g.+ ,  (mod 21) for  i = 0, 1, 2, • • • .   When addition in  G is defined

coordinatewise  (mod 2l   in the z'th coordinate) and  G is given the product topology,

then   G becomes a  compact abelian group.

Let 0 = (O, 1, 1, 1, •••) £ G (so -<9 = (0, 1, 3, 7, ■ • •)),   and for g£ G define

Tg = g + 6.   Then \T"9: n £ TA corresponds to the rational integers in  G so it is

dense in  G [12, Chapter V. 5];  from this it follows readily that § = (G, T) is a

minimal flow.

Define  Kg) = min i/: g. = g+A fot g /-O and K-ö) = 0.   Then  r is continuous

on   G - [-6\.   Let

!0    if n  is even,

1     if ?2   is odd,

for g £ G set fig) = ip ° rig),  and for  72 £ Z  let  y0(72) = find),   so yQ e S.   Let

y = iQiy0)-, ff).

Theorem 4.2.   There is a homomorphism p: ^ —* § sz/ci f/W (a) p     igi   z's a

singleton unless g £  E = Td ithe orbit of the point of discontinuity of /); (b) for

each g £ E,  p_1!gi   consists of exactly two points;  (c) p~  \-6\ = iy„, y A, where

y j(0) / y0(0)  but y x(n) = y0(«) for n / 0;  (d)   if piy) = piy'),   then y and y   are

doubly proximal.    In addition,   A  is minimal and uniquely ergodic.

Proof.  Similar to the proof of Theorem 4.1 and its corollary.

As before, let a(y) = 1 + e(y) (recall  e(y) = yio)) fot y £ %  and let  A =

u~ il!.   Then the hypotheses of Theorems 2.2 and 3-2 are again satisfied, and it

follows that the primitive ou and derivative if .   are topologically weakly mixing

and minimal.

Toeplitz sequences were first studied in  [8] and were named in [ll].

Kakutani (oral communication) proved that for this particular Toeplitz sequence

y0,   the induced flow J"  is uniquely ergodic and measure-theoretically weakly

mixing, hence also topologically weakly mixing.

Remarks. 4.1. Note that the sequence yQ has the following property. For a

block A = «jfl2 • • • an oí 0's and l's, let A*= a^ • • • a^_ xa'n , where  0' = 1
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and  l' = 0.   Let AQ = 0,  and for tz > 0 let An = An_xAn_v   Then the initial

block  y0(0)y0(l) - - • y0(2* - 1) of yQ coincides with  An for  n > 0.

4.2. The method of construction used in these two examples can of course be

applied in other cases as well. For example, let K = (f/, T) be any minimal flow

and B a subset of H such that

E = (J   T"dBÇH
nCZ

where dB denotes the boundary of   B.   We will construct a flow X = (X, T) for

which there is a homomorphism p: X —' H and for which one can prove a theorem

similar to Theorem 4.1.   Pick  hQ £ H - E and define r¡: Z —> H by 77(72) = T"ihQ).

Let C( " ) denote the set of bounded continuous real-valued functions on the

space ( • ).   We say a subset ÍB of C(Z)  is translation invariant if g £ S implies

g    £ iß for each n £ Z where g (ttz) = gin + m) for ttz £ Z.   Define u = ig ° 77:

g e" CifzOS,  so that fl is a uniformly closed, translation invariant subalgebra of

C(Z).   Define /: Z -» Í0, li by  fin) = XBiT"hQ).   Let (?* be the smallest trans-

lation-invariant, uniformly closed subalgebra of C(Z) containing U ui/|.   By [4],

[5], or [17] there is a flow X = (X, T)  and 77*   Z -» X such that (?* = ig o yj*.

g 6 C(X)i,  and a homomorphism p: A —' H such that 77 = p ° 77 .   Let A = p~ iß)

and define zz: X —► il, 2, by zz | A = 1 and u\ (X - A) = 2.   If there isa point

x £ dB such that  T"x ^ dB tot all n / 0, then it can be shown that (X, T) has

properties analogous to those mentioned in Theorem 4.1, and so the induced flows

X    and XA have no nonconstant continuous eigenfunctions.   This approach, in

many disguises, is common in the literature: cf. [5, pp. 8—32], [4, Chapter 9],  or

[17] (a good exposition of these methods can be found in [3]^

5.  Weak mixing without strong mixing.   For this section let  x denote  y

where y0 is the particular Toeplitz sequence discussed in Example 2;  x may also

be defined by  x(tz) = 0 if and only if n = ik ' 22m) - 1  fot some odd  k  and some

ttz = 0, 1, 2, ••• .   Recall that the initial 2"-block of x is  A  ,  where A    is as in
72' 72

Remark 4.1.

Let  X = 6(x)~,  X = (X, a),  and  A = \y £ X: y(Q) = OÍ.   It follows from Example

2 that the derivative XA  of X with respect to A is topologically weakly mixing

and minimal.   Recall that a flow (Z, T) is said to be topologically strongly mixing

if for any nonempty open sets   U, V C Z there is  nQ such that  TnU HV/0

whenever  \n\ > nQ.   We will prove that XA  is not topologically strongly mixing.

For any block  B which appears in x,  let 77(B) denote the collection of all

(nonnegative) integers which have the following property: there is a block  C such

that the block SCB appears in x and the block BC contains  n zeros.   If X.   is

topologically   strongly mixing, then for each block  B which appears in  x there is
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an 720 such that 77(B) 3 [n £ Z: n> nQ\ (cf. [23, Theorem 1.2]).   Fix odd r > 3.

For each 77 = 0, 1, 2, • • •  let p    denote the number of zeros in the initial 2"-block

An of x.   Then   p0 = 1, Pi = 1, p2= 3, p3 = 5, pA = 11, •• • and p„—» "••  We will prove

that for odd 72 > r, P   - 1 ^ 'j(/^r);  therefore A^  cannot be topologically strongly

mixing.

For the following three lemmas, let n denote an arbitrary nonnegative integer.

Lemma 5.1.  A     appears at the  (k ' 2"     )th place in x for all k £ Z.

Proof.  From Remark 4.1 it follows that the 2"    -block appearing at the

ik ' 2"    )th place in x is either A   .,   or A*.., both of which have  A     for their
72Tl72Tl 72

initial 2"-block.

Lemma 5.2.  // A     appears at the mth place in x then m = k ' 2" for some

.k £ Z.

Proof.  For ?2 = 0 there is nothing to prove.   Suppose then that 72 > 1, so A

= A   _jA   _,, and suppose that A     appears at the  722th place in x.   Making the

appropriate induction hypothesis, we may assume that  m = k' 2"~     for some k £ Z.

Suppose  k  is odd.   Then A   _ .   is the 2"~  -block which appears at the   272 + 2"~

= ik + l)2"~     place in x;  by Lemma 5.1 , since  k + 1   is even,  A   _x = A   _      and

this is impossible.   Therefore  k must in fact be even, and  m - k   "2"  for some

k   £ Z.   The result then follows by induction.

Lemma 5.3.  // n is odd,  p+. = 2p   +1 = 1 + £"=0 p.; if n  is even,   p   +, =

2p    - 1 = £?_. p..    Thus (since  r is odd) if n> r then

(n  odd),72-1 iPr C« odd),

¿_r ^1 + pT    (72  even)0.

Proof.   That pn + 1 = 2p^ + (- l)" + 1   is clear from the fact that An + , = AfíA*

and  p0 = 1.   The remaining formulas are then easily proved by induction.

Lemma 5.4.  r¡(A )  is contained in the collection of all numbers a of the form

a = e_p  + e    ,p    , + ■•■ + t  p   ,
pr        r+lrr + l mr m

where  m > r,   each í ■  is  1,0,  or -1   for i = r, r + 1, • • • , m, and t    = 1.

Proof. Because of Lemma 5.2 it suffices to show that for each 72 = 1,2, —

the number of zeros in an initial k ' 2r-block of x, for any k= 1, 2, ••• , 2 -1,

is a number of the form

o ô   +5    ,0    ,+••• + o ,p ,,
7^7 r + lrr + l 7+72- l1   7+72— 1
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where each S ■ is   0 or  1   for  z' = r, r + 1, • • . , r + n - 1.  We proceed by induction

on n.   The statement is clearly true for tz = 1, since the number of zeros in the

initial 2r-block A    of x is pr by definition.

Suppose then that for each k = 1, 2, ■ • • , 2" - 1  the number of zeros in the

initial k ' 2r-block of x is a number of the specified form.   If k = 2", then the

number of zeros in the initial    k' 2r-block of x  is  p   . , which is a number of the

required form.   If k € \2n + 1, 2n +  2, -. •, 2" + 1  - 1 i,  then the initial  k ' 2r-block

of x is An+r followed by the initial  (k - 2")2r-block of A*v   Since  k - 2" < 2"

and this latter block is also an initial block of x, the induction hypothesis implies

that it contains   8 pr + 8 +.p +1 + ■ • • + 5 +  _jp+  _ j   zeros for some choice of

<5. = 0 or  1,   z' = r, r + 1, • • • , r + n - 1.   But then the initial k ' 2r-block of x con-

tains  8 p   + S ,,p  ., + ... + 8 .      ,p 4.     , + p   j.   zeros, and this is a number of
Ttrr r + lrT + l r + 72- lrr+n— 1       rn+r '

the required form.

Assuming e    ^ 0, unless  c    = 1  it follows from Lemma 5.3 that  a < 0; this is

why we may assume that e    = 1.

Theorem 5.1.  With X and A  as above,  XA   is not topologically strongly mixing.

Proof.   Let tz  be odd,  tz > r; as we have remarked, it is enough to show that

Pn - 1  is not a number of the form a = trpf + cr+lPr+i + • • • + emPm, where each

c. is 1,0, or -1  and e    =1, for any m > r.   Because of Lemma 5.3 we may assume

without loss of generality that m > n.

The smallest number of the above form is achieved by taking e. = — 1  for  z =

r, r + 1, •. • , m - 1; from Lemma 5.3 we obtain

(zrz  odd ),-1 (Pr

(l + Pr (m  even).

Now if for some  k > n we change e,  from -1   to  0,  then a becomes either  p, +

pr or p, + pr + 1,  both of which are larger than  p  .   Therefore in order to achieve

a = p   — 1 , we must keep e, = -1  for k = n, n + 1, • • • , m - 1.   Thus

772-1

a=Pm-   Z   Pl + („-iPn-i + --- + erPr
i = n

(m  odd),

■lPn-1
1 + p       (m  even).

The question then becomes whether we can ever have  b = c      ,t>      ,+...+
72- Ir 72— 1

(TPr equal to either -1  or -2.   Let (    iq > r) be the first nonzero coefficient in

this expression, so b = cqpq + •■■ + crpr.   If e   = 1,  b is positive by Lemma 5.3.
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If f   = -1, the largest possible value of b is achieved by taking e, = 1  for

k = r, r + 1, • • • , q — I.   This gives

q- 1       ~p'

(-Pr-i

(a   odd),

iq  even),

so in any case  b < - 5.   Therefore  r? can never be -1   or -2.

This example completes the proof that in the following diagram relating four

properties of uniquely ergodic flows, none of the implications can be reversed, even

if we were to restrict the statements to the class of minimal flows with metrizable

phase spaces.

1

mea sure-theoretic

^ strong mixing

2 ^3

topological measure-theoretic

strong mixing weak mixing

4

^ topological

weak mixing

That (3) does not imply (1) was proved by Kakutani in the examples mentioned

above.   Kolmogorov [18] shows that (4) does not imply (3) when the acting group is

a one-parameter family of homeomorphisms.   It follows from [15, Proposition 3.3]

that (4) does not imply (3) for our setting of a cyclic group  ÍTn|  of homeomorphisms.

Petersen [23] constructed an example for which (2) holds but not (1); and of

course our present example disposes of the question whether (4) implies (2).

6. Irregularities of distribution.   In this section notation is as in Example 1,

Sturmian flows, and again all real numbers are assumed reduced modulo one so as

to lie in  K = [0, 1).

It is well known [20] that if a  is irrational then the sequence [na,: n £ Z¡ is

uniformly distributed.   In particular if / is an interval in K of length ß, then

lim   _±00 U/H) S"=0 XiG'a.) = ß, i.e. [na\ hits  / with probability ß.   Clearly if

y e K then what we  have said about [na\  is true for iy + na]  (consider / + y in

place of /).   In particular if we pick y, y   £ K then each of the sequences

[y +-na.\ and  iy' + na\ hits  / with probability ß.

The Sturmian flows of Example 1 are closely related to the question of whether

one of the two sequences  iy + 72a}, [y  + 72a j  hits   / infinitely more often than the

other.   More precisely, let
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72

Niy,n) = £ x/y +¿a);
1=0

then from the discussion above we know that

lim   — iNiy, n) - /V(y', n)) = /3 - ß = 0.
n-±°° |tj|

We wish to determine when the quantity  My, tz) - N(y , n)  is unbounded.

It is not hard to show that if y  = y + ka, then |My, tz) - My', tz)| < ze for

n £ Z.   It can be proved that if ß 4 Za, then for a residual set of (y, y ) £ K x K

we have (My, tz) - My , tz)) unbounded in n.   This is done by showing that if

jx, y\ ÇX -p~  (E), x and y are proximal under au, and y / a"x for any tz £  Z,

then Nipix), n) - Nicky), n) is unbounded in tz.   The assertion then follows from the known

result [16, Remark 3.4] that, since X    is weakly mixing, its proximal relation is

residual.

It is possible to prove a much stronger result [26]: If 2/3 4  Za  or 2(y - y)

4 Za  then My, tz) - My , n)  is unbounded whenever y - y   4 Za.
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