Isomorphism of simple Lie algebras
HTML articles powered by AMS MathViewer
- by B. N. Allison
- Trans. Amer. Math. Soc. 177 (1973), 173-190
- DOI: https://doi.org/10.1090/S0002-9947-1973-0327852-6
- PDF | Request permission
Abstract:
Let $\mathcal {L}$ and $\mathcal {L}’$ be finite dimensional simple Lie algebras over a field of characteristic zero. A necessary and sufficient condition is given for $\mathcal {L}$ and $\mathcal {L}’$ to be isomorphic. The anisotropic kernel of $\mathcal {L}$ is also studied. In particular, a result about this kernel in the rank one reduced case is proved. This result is then used to prove a conjugacy theorem for the simple summands of the anisotropic kernel in the general reduced case. The results and methods of this paper are rational in the sense that they involve no extension of the base field.References
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- N. Jacobson, A note on automorphisms of Lie algebras, Pacific J. Math. 12 (1962), 303–315. MR 148716, DOI 10.2140/pjm.1962.12.303
- Ichirô Satake, On the theory of reductive algebraic groups over a perfect field, J. Math. Soc. Japan 15 (1963), 210–235. MR 151453, DOI 10.2969/jmsj/01520210 G. Seligman, Topics in Lie algebras, Mimeographed notes, Yale University, New Haven, Conn., 1969.
- Jean-Pierre Serre, Algèbres de Lie semi-simples complexes, W. A. Benjamin, Inc., New York-Amsterdam, 1966 (French). MR 0215886
- J. Tits, Classification of algebraic semisimple groups, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 33–62. MR 0224710
- Nolan R. Wallach, Induced representations of Lie algebras and a theorem of Borel-Weil, Trans. Amer. Math. Soc. 136 (1969), 181–187. MR 233937, DOI 10.1090/S0002-9947-1969-0233937-4
- Nolan R. Wallach, Induced representations of Lie algebras. II, Proc. Amer. Math. Soc. 21 (1969), 161–166. MR 237590, DOI 10.1090/S0002-9939-1969-0237590-0
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 177 (1973), 173-190
- MSC: Primary 17B20
- DOI: https://doi.org/10.1090/S0002-9947-1973-0327852-6
- MathSciNet review: 0327852