A second quadrant homotopy spectral sequence
HTML articles powered by AMS MathViewer
- by A. K. Bousfield and D. M. Kan
- Trans. Amer. Math. Soc. 177 (1973), 305-318
- DOI: https://doi.org/10.1090/S0002-9947-1973-0372859-6
- PDF | Request permission
Abstract:
For each cosimplicial simplicial set with basepoint, the authors construct a homotopy Spectral sequence generalizing the usual spectral sequence for a second quadrant double chain complex. For such homotopy spectral sequences, a uniqueness theorem and a general multiplicative pairing are established. This machinery is used elsewhere to show the equivalence of various unstable Adams spectral sequences and to construct for them certain composition pairings and Whitehead products.References
- A. K. Bousfield and D. M. Kan, The homotopy spectral sequence of a space with coefficients in a ring, Topology 11 (1972), 79–106. MR 283801, DOI 10.1016/0040-9383(72)90024-9
- A. K. Bousfield and D. M. Kan, Pairings and products in the homotopy spectral sequence, Trans. Amer. Math. Soc. 177 (1973), 319–343. MR 372860, DOI 10.1090/S0002-9947-1973-0372860-2
- Edward B. Curtis, Simplicial homotopy theory, Advances in Math. 6 (1971), 107–209 (1971). MR 279808, DOI 10.1016/0001-8708(71)90015-6
- Albrecht Dold and Dieter Puppe, Homologie nicht-additiver Funktoren. Anwendungen, Ann. Inst. Fourier (Grenoble) 11 (1961), 201–312 (German, with French summary). MR 150183, DOI 10.5802/aif.114
- J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0222892
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 177 (1973), 305-318
- MSC: Primary 55H15
- DOI: https://doi.org/10.1090/S0002-9947-1973-0372859-6
- MathSciNet review: 0372859