Geodesic flows on negatively curved manifolds. II
HTML articles powered by AMS MathViewer
- by Patrick Eberlein
- Trans. Amer. Math. Soc. 178 (1973), 57-82
- DOI: https://doi.org/10.1090/S0002-9947-1973-0314084-0
- PDF | Request permission
Abstract:
Let M be a complete Riemannian manifold with sectional curvature $K \leq 0$, SM the unit tangent bundle of M, ${T_t}$ the geodesic flow on SM and $\Omega \subseteq SM$ the set of nonwandering points relative to ${T_t}$. ${T_t}$ is topologically mixing (respectively topologically transitive) on SM if for any open sets 0, U of SM there exists $A > 0$ such that $\left | t \right | \geq A$ implies ${T_t}(O) \cap U \ne \emptyset$ (respectively there exists $t\;\varepsilon \;R$ such that ${T_t}(O) \cap U \ne \emptyset$). For each vector $v\;\varepsilon \;SM$ we define stable and unstable sets ${W^s}(v),{W^{ss}}(v),{W^u}(v)$ and ${W^{uu}}(v)$, and we relate topological mixing (respectively topological transitivity) of ${T_t}$ to the existence of a vector $v\; \in \;SM$ such that ${W^{ss}}(v)$ (respectively ${W^s}(v)$) is dense in SM. If M is a Visibility manifold (implied by $K \leq c < 0$) and if $\Omega = SM$ then ${T_t}$ is topologically mixing on SM. Let ${S_n} =$ {Visibility manifolds M of dimension n such that ${T_t}$ is topologically mixing on SM}. For each $n \geq 2$, ${S_n}$ is closed under normal (Galois) Riemannian coverings. If $M\; \in \;{S_n}$ we classify {$v\; \in \;SM:\;{W^{ss}}(v)$ is dense in SM}, and M is compact if and only if this set = SM. We also consider the case where $\Omega$ is a proper subset of SM.References
- D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. 90 (1967), 209 (Russian). MR 0224110
- N. P. Bhatia and G. P. Szegő, Dynamical systems: Stability theory and applications, Lecture Notes in Mathematics, No. 35, Springer-Verlag, Berlin-New York, 1967. MR 0219843, DOI 10.1007/BFb0080630
- George D. Birkhoff, Dynamical systems, American Mathematical Society Colloquium Publications, Vol. IX, American Mathematical Society, Providence, R.I., 1966. With an addendum by Jurgen Moser. MR 0209095
- R. L. Bishop and B. O’Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1–49. MR 251664, DOI 10.1090/S0002-9947-1969-0251664-4
- Herbert Busemann, The geometry of geodesics, Academic Press, Inc., New York, N.Y., 1955. MR 0075623
- Patrick Eberlein, Geodesic flow in certain manifolds without conjugate points, Trans. Amer. Math. Soc. 167 (1972), 151–170. MR 295387, DOI 10.1090/S0002-9947-1972-0295387-4
- Patrick Eberlein, Geodesic flows on negatively curved manifolds. I, Ann. of Math. (2) 95 (1972), 492–510. MR 310926, DOI 10.2307/1970869
- Patrick Eberlein, Geodesic flows in manifolds of nonpositive curvature, Smooth ergodic theory and its applications (Seattle, WA, 1999) Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc., Providence, RI, 2001, pp. 525–571. MR 1858545, DOI 10.1090/pspum/069/1858545
- Anna Grant, Surfaces of negative curvature and permanent regional transitivity, Duke Math. J. 5 (1939), no. 2, 207–229. MR 1546119, DOI 10.1215/S0012-7094-39-00520-X
- Gustav A. Hedlund, The dynamics of geodesic flows, Bull. Amer. Math. Soc. 45 (1939), no. 4, 241–260. MR 1563961, DOI 10.1090/S0002-9904-1939-06945-0
- Gustav A. Hedlund, Fuchsian groups and mixtures, Ann. of Math. (2) 40 (1939), no. 2, 370–383. MR 1503464, DOI 10.2307/1968925
- Gustav A. Hedlund, Fuchsian groups and transitive horocycles, Duke Math. J. 2 (1936), no. 3, 530–542. MR 1545946, DOI 10.1215/S0012-7094-36-00246-6
- Eberhard Hopf, Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung, Ber. Verh. Sächs. Akad. Wiss. Leipzig Math.-Phys. Kl. 91 (1939), 261–304 (German). MR 1464
- Eberhard Hopf, Statistik der Lösungen geodätischer Probleme vom unstabilen Typus. II, Math. Ann. 117 (1940), 590–608 (German). MR 2722, DOI 10.1007/BF01450032 B. O’Neill, (to appear).
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 178 (1973), 57-82
- MSC: Primary 58F10; Secondary 53C20, 53C70
- DOI: https://doi.org/10.1090/S0002-9947-1973-0314084-0
- MathSciNet review: 0314084