Submanifolds and a pinching problem on the second fundamental tensors
HTML articles powered by AMS MathViewer
- by Masafumi Okumura
- Trans. Amer. Math. Soc. 178 (1973), 285-291
- DOI: https://doi.org/10.1090/S0002-9947-1973-0317246-1
- PDF | Request permission
Abstract:
This paper gives a sufficient condition for a submanifold of a Riemannian manifold of nonnegative constant curvature to be totally umbilical. The condition will be given by an inequality which is established between the length of the second fundamental tensor and the mean curvature.References
- J. A. Erbacher, Isometric immersions of Riemannian manifolds into space forms, Thesis, Brown University, Providence, R. I., 1970.
H. Liebmann, Über die Verbiegung der geschlassenen Flächen positiver Krummung, Math. Ann. 53 (1900), 91-112.
- Katsumi Nomizu and Brian Smyth, A formula of Simons’ type and hypersurfaces with constant mean curvature, J. Differential Geometry 3 (1969), 367–377. MR 266109
- Masafumi Okumura, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math. 96 (1974), 207–213. MR 353216, DOI 10.2307/2373587
- K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies, No. 32, Princeton University Press, Princeton, N. J., 1953. MR 0062505
- Kentaro Yano and Shigeru Ishihara, Submanifolds with parallel mean curvature vector, J. Differential Geometry 6 (1971/72), 95–118. MR 298598
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 178 (1973), 285-291
- MSC: Primary 53C40
- DOI: https://doi.org/10.1090/S0002-9947-1973-0317246-1
- MathSciNet review: 0317246