Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Exit properties of stochastic processes with stationary independent increments
HTML articles powered by AMS MathViewer

by P. W. Millar
Trans. Amer. Math. Soc. 178 (1973), 459-479
DOI: https://doi.org/10.1090/S0002-9947-1973-0321198-8

Abstract:

Let $\{ {X_t},t \geq 0\}$ be a real stochastic process with stationary independent increments. For $x > 0$, define the exit time ${T_x}$ from the interval $( - \infty ,x]$ by ${T_x} = \inf \{ t > 0:{X_t} > x\}$. A reasonably complete solution is given to the problem of deciding precisely when ${P^0}\{ {X_{{T_x}}} = x\} > 0$ and precisely when ${P^0}\{ {X_{{T_x}}} = x\} = 0$. The solution is given in terms of parameters appearing in the Lévy formula for the characteristic function of ${X_t}$. A few applications of this result are discussed.
References
  • R. M. Blumenthal and R. K. Getoor, Sample functions of stochastic processes with stationary independent increments, J. Math. Mech. 10 (1961), 493–516. MR 0123362
  • R. M. Blumenthal and R. K. Getoor, Local times for Markov processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964), 50–74. MR 165569, DOI 10.1007/BF00531683
  • R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. MR 0264757
  • Salomon Bochner, Harmonic analysis and the theory of probability, University of California Press, Berkeley-Los Angeles, Calif., 1955. MR 0072370, DOI 10.1525/9780520345294
  • Leo Breiman, Probability, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1968. MR 0229267
  • Jean Bretagnolle, Résultats de Kesten sur les processus à accroissements indépendants, Séminaire de Probabilités, V (Univ. Strasbourg, année universitaire 1969–1970), Lecture Notes in Math., Vol. 191, Springer, Berlin, 1971, pp. 21–36 (French). MR 0368175
  • Kai Lai Chung, A course in probability theory, Harcourt, Brace & World, Inc., New York, 1968. MR 0229268
  • B. E. Fristedt, Forthcoming monograph, Chap. 9.
  • R. K. Getoor and H. Kesten, Continuity of local times for Markov processes, Compositio Math. 24 (1972), 277–303. MR 310977
  • Nobuyuki Ikeda and Shinzo Watanabe, On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes, J. Math. Kyoto Univ. 2 (1962), 79–95. MR 142153, DOI 10.1215/kjm/1250524975
  • Harry Kesten, Hitting probabilities of single points for processes with stationary independent increments, Memoirs of the American Mathematical Society, No. 93, American Mathematical Society, Providence, R.I., 1969. MR 0272059
  • —, Continuity of local times for Markov processes, Preliminary manuscript whose final version was [9].
  • John Lamperti, An invariance principle in renewal theory, Ann. Math. Statist. 33 (1962), 685–696. MR 137176, DOI 10.1214/aoms/1177704590
  • P.-A. Meyer, Intégrales stochastiques. I, II, III, IV, Séminaire de Probabilités (Univ. Strasbourg, Strasbourg, 1966/67) Springer, Berlin, 1967, pp. 72–94, 95–117, 118–141, 142–162 (French). MR 0231445
  • P. A. Meyer, Un théorème sur la répartition des temps locaux, Séminaire de Probabilités, V (Univ. Strasbourg, année universitaire 1969–1970), Lecture Notes in Math., Vol. 191, Springer, Berlin, 1971, pp. 209–210. MR 0400419
  • Paul-André Meyer, Processus de Markov, Lecture Notes in Mathematics, No. 26, Springer-Verlag, Berlin-New York, 1967 (French). MR 0219136
  • P. W. Millar, Path behavior of processes with stationary independent increments, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 17 (1971), 53–73. MR 324781, DOI 10.1007/BF00538475
  • P. Warwick Millar, Stochastic integrals and processes with stationary independent increments, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 307–331. MR 0402922
  • B. A. Rogozin, Distribution of certain functionals related to boundary value problems for processes with independent increments, Teor. Verojatnost. i Primenen. 11 (1966), 656–670 (Russian, with English summary). MR 0208682
  • B. A. Rogozin, The local behavior of processes with independent increments, Teor. Verojatnost. i Primenen. 13 (1968), 507–512 (Russian, with English summary). MR 0242261
  • E. S. Štatland, On local properties of processes with independent increments, Teor. Verojatnost. i Primenen. 10 (1965), 344–350 (Russian, with English summary). MR 0183022
  • Shinzo Watanabe, On stable processes with boundary conditions, J. Math. Soc. Japan 14 (1962), 170–198. MR 144387, DOI 10.2969/jmsj/01420170
  • Shinzo Watanabe, On discontinuous additive functionals and Lévy measures of a Markov process, Jpn. J. Math. 34 (1964), 53–70. MR 185675, DOI 10.4099/jjm1924.34.0_{5}3
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 60J30
  • Retrieve articles in all journals with MSC: 60J30
Bibliographic Information
  • © Copyright 1973 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 178 (1973), 459-479
  • MSC: Primary 60J30
  • DOI: https://doi.org/10.1090/S0002-9947-1973-0321198-8
  • MathSciNet review: 0321198