Surjective stability in dimension $0$ for $K_{2}$ and related functors
HTML articles powered by AMS MathViewer
- by Michael R. Stein
- Trans. Amer. Math. Soc. 178 (1973), 165-191
- DOI: https://doi.org/10.1090/S0002-9947-1973-0327925-8
- PDF | Request permission
Abstract:
This paper continues the investigation of generators and relations for Chevalley groups over commutative rings initiated in [14]. The main result is that if A is a semilocal ring generated by its units, the groups $L({\mathbf {\Phi }},A)$ of [14] are generated by the values of certain cocycles on ${A^\ast } \times {A^\ast }$. From this follows a surjective stability theorem for the groups $L({\mathbf {\Phi }},A)$, as well as the result that $L({\mathbf {\Phi }},A)$ is the Schur multiplier of the elementary subgroup of the points in A of the universal Chevalley-Demazure group scheme with root system ${\mathbf {\Phi }}$, if ${\mathbf {\Phi }}$ has large enough rank. These results are proved via a Bruhat-type decomposition for a suitably defined relative group associated to a radical ideal. These theorems generalize to semilocal rings results of Steinberg for Chevalley groups over fields, and they give an effective tool for computing Milnor’s groups ${K_2}(A)$ when A is semilocal.References
- H. Bass, M. Lazard, and J.-P. Serre, Sous-groupes d’indice fini dans $\textbf {SL}(n,\,\textbf {Z})$, Bull. Amer. Math. Soc. 70 (1964), 385–392 (French). MR 161913, DOI 10.1090/S0002-9904-1964-11107-1 A. Christofides, Structure and presentations of unimodular groups, Thesis, Queen Mary College, University of London, 1966. R. K. Dennis, Universal $G{E_n}$ rings and the functor ${K_2}$ (unpublished manuscript; see [24]).
- Klaus E. Eldridge and Irwin Fischer, $\textrm {D.C.C.}$ rings with a cyclic group of units, Duke Math. J. 34 (1967), 243–248. MR 214618
- Robert W. Gilmer Jr., Finite rings having a cyclic multiplicative group of units, Amer. J. Math. 85 (1963), 447–452. MR 154884, DOI 10.2307/2373134
- G. Hochschild and J.-P. Serre, Cohomology of group extensions, Trans. Amer. Math. Soc. 74 (1953), 110–134. MR 52438, DOI 10.1090/S0002-9947-1953-0052438-8 S. Mac Lane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #122.
- Hideya Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. École Norm. Sup. (4) 2 (1969), 1–62 (French). MR 240214, DOI 10.24033/asens.1174
- John Milnor, Introduction to algebraic $K$-theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0349811
- Calvin C. Moore, Group extensions of $p$-adic and adelic linear groups, Inst. Hautes Études Sci. Publ. Math. 35 (1968), 157–222. MR 244258
- J. R. Silvester, On the $K_{2}$ of a free associative algebra, Proc. London Math. Soc. (3) 26 (1973), 35–56. MR 313286, DOI 10.1112/plms/s3-26.1.35 —, A presentation of the $G{L_n}$ of a semi-local ring (to appear).
- Michael R. Stein, Chevalley groups over commutative rings, Bull. Amer. Math. Soc. 77 (1971), 247–252. MR 291358, DOI 10.1090/S0002-9904-1971-12704-0
- Michael R. Stein, Generators, relations and coverings of Chevalley groups over commutative rings, Amer. J. Math. 93 (1971), 965–1004. MR 322073, DOI 10.2307/2373742 —, Injective stability in dimension 0 for ${K_2}$ and related functors (in preparation).
- Michael R. Stein, Relativizing functors on rings and algebraic $K$-theory, J. Algebra 19 (1971), 140–152. MR 283055, DOI 10.1016/0021-8693(71)90123-2
- Robert Steinberg, Générateurs, relations et revêtements de groupes algébriques, Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962) Librairie Universitaire, Louvain; Gauthier-Villars, Paris, 1962, pp. 113–127 (French). MR 0153677 —, Lectures on Chevalley groups, Mimeographed notes, Yale University, New Haven, Conn., 1967. W. Wardlaw, Defining relations for integrally parameterized Chevalley groups, Thesis, University of California, Los Angeles, Calif., 1966.
- R. Keith Dennis, Stability for $K_{2}$, Proceedings of the Conference on Orders, Group Rings and Related Topics (Ohio State Univ., Columbus, Ohio, 1972) Lecture Notes in Math., Vol. 353, Springer, Berlin, 1973, pp. 85–94. MR 0347892 —, Surjective stability for the functor ${K_2}$ (to appear).
- R. Keith Dennis and Michael R. Stein, A new exact sequence for $K_{2}$ and some consequences for rings of integers, Bull. Amer. Math. Soc. 78 (1972), 600–603. MR 302631, DOI 10.1090/S0002-9904-1972-13022-2 —, ${K_2}$ of discrete valuation rings (to appear). M. R. Stein and R. K. Dennis, ${K_2}$ of radical ideals and semi-local rings revisited, Proc. Conf. on Algebraic K-Theory (Battelle Seattle Research Center, August 28—September 8, 1972), Lecture Notes in Math., Springer-Verlag, Berlin and New York (to appear).
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 178 (1973), 165-191
- MSC: Primary 20G35; Secondary 14L15
- DOI: https://doi.org/10.1090/S0002-9947-1973-0327925-8
- MathSciNet review: 0327925