ALGEBRAIC COHOMOLOGY OF TOPOLOGICAL GROUPS

BY

DAVID WIGNER

ABSTRACT. A general cohomology theory for topological groups is described, and shown to coincide with the theories of C. C. Moore [12] and other authors. We also recover some invariants from algebraic topology.

This article contains proofs of results announced in [15]. We consider algebraic cohomology groups of topological groups, which are shown to include the invariants considered by Van Est [6], Hochschild and Mostow [7], C. C. Moore [12], and Tate (see [5]). We identify some of these groups as invariants familiar from algebraic topology.

Let G be a topological group. A topological G-module is an abelian topological group A together with a continuous map $G \times A \to A$ satisfying the usual relations $g(a + a') = ga + ga'$, $(gg')a = g(g'a)$, $1a = a$. The category of topological G-modules and equivariant continuous homomorphisms is a quasi-abelian category in the sense of Yoneda [16], and hence we get Ext functors just as in an abelian category. A proper short exact sequence will be a sequence $0 \to A \to B \to C \to 0$ of topological G-modules which is exact as a sequence of abstract groups and such that A has the subspace topology induced by its embedding in B, and such that u be an open map. For any G-module A we define the algebraic cohomology groups $H^i(G, A)$ to be the ith Ext group $\text{Ext}^i(Z, A)$, where Z denotes the group of integers with the discrete topology and trivial G-action.

There is another set of short exact sequences we might have chosen which also give the category of topological G-modules the structure of a quasi-abelian S-category in the sense of Yoneda. We might have demanded that in addition to being exact in the previous sense, there be a continuous map $s : C \to B$ such that the composition $u \circ s$ be the identity on C. If G is locally compact we recover the "continuous cochains" theory, which is discussed in [5], [6], and [7]. If G is not locally compact it must be shown that continuous cochains are effaceable, i.e. that for any continuous cocycle $c : G^n \to A$ there is a short exact sequence $0 \to A \to B \to C \to 0$ such that $\tau \circ c$ is the coboundary of a
continuous cochain $c': G^{n-1} \to B$. If G has the weak topology with respect to a countable collection of compact sets, this will follow from a lemma of Milnor [11].

In this paper we consider only complete metric G-modules. This is made plausible by a theorem of L. Brown, [2] that if C and A are complete metric G-modules, then the groups $\text{Ext}^n(C, A)$ do not depend on whether we consider all, all pseudometrizable, or all complete metric G-modules, provided that G is weakly separable (i.e. that any uniform cover of G has a countable subcover). Furthermore our arguments also apply to the category of complete separable metric G-modules, hence to the functors of [12].

1. Definition of the $H^i(G, A)$. (See [16], also [9, Chapter 12, 5].) Let M be an additive category (with direct sums) and $\phi: A \to B$ be a map in M. A map $N \to A$ is called the kernel of ϕ if the induced sequence of abelian groups $0 \to \text{Hom}(C, N) \to \text{Hom}(C, A) \to \text{Hom}(C, B)$ is exact for any object C of M. Dually a map $B \to L$ is called the cokernel of ϕ if the sequence

$$0 \to \text{Hom}(L, C) \to \text{Hom}(B, C) \to \text{Hom}(A, C)$$

is exact for any object C of M. This implies that the compositions $N \to A \to B$ and $A \to B \to L$ are 0.

Definition. A sequence $0 \to A \xrightarrow{\sigma} B \xrightarrow{\tau} C \xrightarrow{0}$ of maps in M is called proper exact if σ is the kernel of τ and τ is the cokernel of σ. An n-term long exact sequence in M is a sequence of short exact sequences

$$0 \rightarrow A_i \rightarrow B_i \rightarrow C_i \rightarrow 0,$$

such that $C_i = A_{i+1}$ for $1 \leq i < n$. It will usually be written

$$0 \rightarrow A_1 \xrightarrow{\sigma_1} B_1 \xrightarrow{\rho_1} B_2 \cdots \xrightarrow{\rho_{n-1}} B_n \xrightarrow{\tau_n} C_n \rightarrow 0$$

where $\rho_i = \sigma_{i+1} \circ \tau_i$. Yoneda defines $\text{EXT}^n(C, A)$ as the set of n-term long exact sequences with $A_1 = A$, $C_n = C$.

Definition (Yoneda). An additive category is called quasi-abelian if it satisfies the following conditions (Q) and (Q*):

- (Q) Any proper exact sequences $0 \to A \to B' \to C' \to 0$ and $0 \to C \to C'$ can be combined into a commutative diagram with proper exact rows and columns:

$$\begin{array}{ccc}
0 & 0 \\
\downarrow & \downarrow \\
0 & A & B & C & 0 \\
\downarrow & \downarrow & \downarrow \\
D & D & D & D \\
\downarrow & \downarrow & \downarrow \\
0 & 0 & 0 & 0
\end{array}$$

(Diagram Q)
Any proper exact sequences $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ and $A \rightarrow A' \rightarrow 0$
can be combined into a commutative diagram with proper exact rows and columns:

$\begin{array}{c}
0 & 0 \\
\downarrow & \downarrow \\
D = D & \\
\downarrow & \\
0 & 0
\end{array}$

(Diagram Q*)

A quasi-abelian S-category is an additive category with a distinguished subset S of proper exact sequences which satisfy Q and Q^*. As an example we have the category of all abelian topological groups and all proper maps thereof; in this case a map is proper if and only if it is open with respect to the relative topology of its range. In Diagram Q, C is a closed subgroup of C', B is its inverse image in B' which is again a closed subgroup. Since $B \supset A$ we have $B/B' \cong C/C'$ which is D. This verifies (Q). In Diagram Q^*, D is the kernel of $A \rightarrow A'$, $B' \cong B/D$, and $A \supset D$, we have $B'/A' \cong B/A \cong C$. Also for any fixed Hausdorff topological group G one can consider the category \mathbb{M}_G of G-modules, complete metrizable abelian topological groups A with continuous action $G \times A \rightarrow A$ satisfying $1a = a$, $(g^r g')a = g(g'a)$ and $g(a + a') = ga + ga'$ and continuous equivariant homomorphisms. As with abelian topological groups the totality of all proper maps gives \mathbb{M}_G the structure of a quasi-abelian S-category and henceforth \mathbb{M}_G will be assumed to be equipped with this structure. In a quasi-abelian category Yoneda defines functors $\text{Ext}^n(C, A)$ as a certain quotient of $\text{EXT}^n(C, A)$, the set of n-term long exact sequences. Let $0 \rightarrow A \rightarrow B_1 \rightarrow \cdots \rightarrow B_n \rightarrow C \rightarrow 0$ and $0 \rightarrow A \rightarrow B_1' \rightarrow \cdots \rightarrow B_n' \rightarrow C \rightarrow 0$
be elements of $\text{EXT}^n(C, A)$. We say there is a map between them if there exists a commutative diagram

$\begin{array}{c}
0 & \rightarrow & A & \rightarrow & B_1 & \rightarrow & \cdots & \rightarrow & B_n & \rightarrow & C & \rightarrow & 0 \\
\| & & \downarrow & & \downarrow & & \| & & \downarrow & & \| \\
0 & \rightarrow & A & \rightarrow & B_1' & \rightarrow & \cdots & \rightarrow & B_n' & \rightarrow & C & \rightarrow & 0
\end{array}$

$\text{Ext}^n(C, A)$ is defined as the quotient of $\text{EXT}^n(C, A)$ under the equivalence relation generated by maps between long exact sequences.

If A is a G-module, we define $H^n(G, A)$ to be $\text{Ext}^n_{\mathbb{M}_G}(Z, A)$, where Z is the group of integers with the discrete topology and trivial G-action.

It follows from Yoneda's work that if $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is a proper
exact sequence of topological G-modules, we have a long exact sequence

$$0 \rightarrow H^0(G, A) \rightarrow H^0(G, B) \rightarrow H^0(G, C) \rightarrow H^1(G, A) \rightarrow H^1(G, B) \rightarrow H^1(G, C) \rightarrow H^2(G, A) \rightarrow \ldots.$$

We can then complete a diagram chase to show the $H^i(G, A)$ are universal functors [4] and prove a "Buchsbaum criterion" for the $H^i(G, A)$. Namely an exact connected sequence of functors $\widetilde{H}^i(G, A)$ is naturally isomorphic to the $H^i(G, A)$ if $\widetilde{H}^0(G, A) \cong H^0(G, A)$ and satisfies the following condition:

For $i > 0$ and $X \in \widetilde{H}^i(A)$ there exists a proper monomorphism $\theta: A \rightarrow B$ such that $\theta_* (X) = 0$. It follows immediately from Buchsbaum's criterion and results of C. C. Moore [12] that the functors of [12] coincide with the $H^i(G, A)$ described above.

Henceforward let G be locally compact σ-compact and let \mathbb{M}_G be the category of complete metric G-modules. If A is a G-module let $C^n(G, A)$ be the set of continuous maps of the n-fold cartesian product G^n into A. Let $\delta_n: C^n(G, A) \rightarrow C^{n+1}(G, A)$ be the usual coboundary operator:

$$\delta_n(f(g_0, \ldots, g_n)) = g_0 f(g_1 \ldots g_n) - f(g_0, g_2, \ldots, g_n) + \cdots \pm f(g_0, \ldots, g_{n-1}).$$

Define $\tilde{H}^n(G, A)$ as the nth cohomology group of the complex $0 \rightarrow C^0(G, A) \rightarrow C^1(G, A) \rightarrow \cdots \rightarrow C^n(G, A) \rightarrow A$ are the continuous functions from $G^0 = \text{point}$ into A. $\delta_0 a = ga - a$ so $\tilde{H}^0(G, A) \cong \text{Hom}_{\mathbb{M}_G}(Z, A) \cong H^0(G, A)$. If $F(G, A) \in \mathbb{M}_G$ is the module of continuous functions from G into A topologized with the compact open topology, the natural map $A \rightarrow F(G, A)$ kills $\tilde{H}^0(G, A)$ (cf. [7]). The \tilde{H}^i form an exact connected sequence of functors if we demand that all short exact sequences $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ have a section, i.e. a continuous map $\rho: C \rightarrow B$ such that $\pi \circ \rho = \text{identity}$. We call this the "continuous cochains" theory.

Now suppose G is zero-dimensional. Then the $\tilde{H}^i(G, A)$ are exact for arbitrary short exact sequences because of the following theorem of Michael:

Theorem M. If $\pi: B \rightarrow C$ is an open homomorphism of complete metric topological groups, and if $q: G \rightarrow C$ is a continuous map of a 0-dimensional paracompact space into C, then there exists a continuous map $\rho: G \rightarrow B$ such that $\pi \circ \rho = q$.

Hence by Buchsbaum's criterion

Theorem 1. If G is locally compact, σ-compact, zero-dimensional, $H^i(G, A) \cong \tilde{H}^i(G, A)$ defined above.

We now show how to embed an arbitrary complete metric G-module in a contractible complete metric G-module. Let A be a complete metric G-module with a bounded, invariant metric ρ. Let S be the topological group of step functions from the unit interval $[0, 1]$ to A which have only finitely many steps with metric obtained from integrating ρ on $[0, 1]$ and natural G action. $G \times S \rightarrow S$ is con-
tinuous since the functions of S assume only finitely many values. Let \mathcal{G}_A be the completion of S which is also a G-module by [2] or [12]. \mathcal{G}_A will be the space measurable functions $[0, 1] \to A$ modulo functions almost everywhere 0. Let $C: \mathcal{G}_A \times [0, 1]$ be defined by

$$C(f, \alpha)(x) = 0, \quad \text{if } x < \alpha,$$

$$= f(x), \quad \text{if } x \geq \alpha.$$

C is a contraction of \mathcal{G}_A which shrinks all distances; hence \mathcal{G}_A is contractible and locally contractible. In fact any contractible topological group is locally contractible.

2. Some fibration properties of open homomorphisms.

Lemma 1. Let $0 \to A \to B \xrightarrow{p} C \to 0$ be an exact sequence of complete metric abelian groups with A locally arcwise connected. Let PB (respectively PC) denote the space of continuous paths in B (respectively C) starting at the identity with the topology of uniform convergence. Then the induced map $p_* : PB \to PC$ is open.

Proof. Since PB and PC are complete metric abelian topological groups, it will be enough to show p_* almost open by the open mapping theorem. Let d be an invariant metric on B. d induces an invariant metric d' on C by taking the distance between cosets of A. Let $\epsilon > 0$; we must show there exists a δ such that for any path in C, $p: [0, 1] \to C$ such that for all $x \in [0, 1], d(p(x), id) < \delta$ and for all $y > 0$ there is a path in B, $q: [0, 1] \to B$ such that for all $y \in [0, 1], d(q(y), id) < \epsilon$ and $d(pq(y), p(y)) < y$. Now d induces a metric on A. Pick $\delta < \epsilon/4$ and such that any two points in A at distance $< 4\delta$ of the identity of A can be joined by a path in A, all of whose points s satisfy $d(s, id) < \epsilon/4$. Now by a theorem of Michael [11, II, Theorem 1.2], p lifts locally to $q^* : [0, 1] \to \{x \in B | d(x, id) < \delta\} = N$. Since $[0, 1]$ is compact we can assume it covered by a finite number of sub-intervals $I_i = [a_i, b_i], i = 1, \ldots, n$ with $a_1 = 0, b_n = 1, a_i < b_{i-1}, b_i < a_{i+2}$ and $q_i : I_i \to N$ continuous such that $\rho \circ q_i = p | I_i$. Now $d(q_i^*(b_i), q_{i+1}^*(b_i)) < 2\delta$ so there is a path $r_i : [0, 1/2] \to \rho^{-1}(p(b_i))$ with $r_i(0) = q_i^*(b_i), r_i(1/2) = q_{i+1}^*(b_i), d(r_i(x), id) < \epsilon$. Pick $\beta < \min_i (b_i/10, (b_{i+1} - b_i)/10)$ and such that for all i and all α with $0 \leq \alpha \leq \beta, d(p(b_i + \alpha), p(b_i)) < \gamma/2$.

Define q as follows: for

$$0 \leq x \leq b_i, \quad q(x) = q_i^*(x),$$

$$b_i + \beta \leq x \leq b_{i+1}, \quad q(x) = q_{i+1}^*(x),$$

$$b_i \leq x \leq b_i + \frac{1}{2}\beta, \quad q(x) = r_i((x - b_i)/\beta),$$

$$b_i + \frac{1}{2}\beta \leq x \leq b_i + \beta, \quad q(x) = q_{i+1}^*(b_i + (2(x - b_i)/\beta - 1)\beta).$$
It is clear that \(q \) has the required properties. The idea of this construction is to splice the \(q_j \)'s together without going far from the origin. This proves the lemma.

Definition. A complete metric abelian topological group \(A \) is said to have property \(F \) if for any short exact sequence of complete metric abelian topological groups \(0 \to A \overset{\sigma}{\to} B \overset{\tau}{\to} C \to 0 \), \(\tau \) has the homotopy lifting property for finite dimensional (paracompact) spaces. Dimension will be understood in the sense of Lebesgue covering dimension. \(\mathcal{M}_G^F \) will denote the category of complete metric \(G \text{-modules} \) having property \(F \), where a sequence is exact if it is exact in \(\mathcal{M}_G \).

Proposition 1. Let \(0 \to A \to B \to C \to 0 \) be exact in \(\mathcal{M}_G \) where \(A, C \) have property \(F \). Then \(B \) has property \(F \).

Proof. Let \(0 \to A \to B \to C \to 0 \) in \(\mathcal{M}_G \) where \(A \) and \(C \) have property \(F \). Let also \(0 \to B \to D \overset{\rho}{\to} E \to 0 \) in \(\mathcal{M}_G \). Consider the diagram in \(\mathcal{M}_G \).

\[
\begin{array}{c}
\text{0} \\
\downarrow \\
A \\
\downarrow \\
0 \to B \to D \overset{\rho}{\to} E \to 0 \\
\downarrow \\
0 \to C \to C' \overset{\sigma}{\to} E \to 0 \\
\downarrow \\
\text{0} \\
\end{array}
\]

Let \(b: X \times I \to E \) be a homotopy of which property \(F \) would guarantee a lifting. Since \(C \) has property \(F \), \(h \) can be lifted to \(C \). Since \(A \) has property \(F \), \(b \) can be lifted to \(D \). This proves \(B \) has property \(F \).

Corollary. \(\mathcal{M}_G^F \) is a quasi-abelian \(S \)-category.

Proposition 2. If \(A \) is a locally compact closed subgroup of a topological group \(G \) the projection \(G \to G/A \) is a fibration.

Proof. First suppose \(A \) compact. Let \(h \) be a homotopy of \(X \times I \to G/A \) and \(b_1 \) be a lifting \(X \times I \to G \). Consider the set \(S \) of pairs \((A_{a}, b_{a}) \) where \(A_{a} \) is closed in \(A \), \(\pi_{a} : G \to G/A_{a}, b_{a} : X \times I \to G/A_{a}, \pi_{a} \circ b_{a} = b, \pi_{a} \circ b_1 = b_{a} \mid X \times I \). We define a partial order on \(S \). If \(A_{a} \subseteq A_{b}, \pi_{b} : G/A_{a} \to G/A_{b} \) and \(\pi_{a} \circ b_{a} = b_{b} \) we say \((A_{a}, b_{a}) \geq (A_{b}, b_{b}) \). If \(\{ (A_{\gamma}, b_{\gamma}) \}_{\gamma \in I} \) is a linearly ordered subset of \(S \) we obtain

\[
\bar{b} : X \times I \to \lim_{\gamma \in I} A_{\gamma} = \bigcap_{\gamma \in I} A_{\gamma}
\]

and \(\{ (A_{\gamma}, b_{\gamma}) \} \) is an upper bound. Hence Zorn's lemma applies, and \(S \) has
(Aₜ, bₜ) maximal. But if Aₜ ≠ {1}, Aₜ has a proper closed subgroup Aₜ ≠ Aₜ such that
Aₜ/Aₜ is a Lie group. Hence G/Aₜ → G/Aₜ has a local section and is a fibration, hence (Aₜ, bₜ) cannot have been maximal. Hence Aₜ = {1}. This shows
G → G/A has a homotopy lifting property for A compact. But by the structure
theorem any locally compact A has an open subgroup A' such that A' has a
compact normal subgroup A" such that A'/A" is a Lie group. G → G/A" is a fibration. Since A'/A" is a Lie group G/A" → G/A' is a fibration by [14, The-
orem 1]. A/A' is discrete so G/A' → G/A is even a covering space. Since
G → G/A is a composite of fibrations it is a fibration.

Corollary. A locally arcwise compact metric G-module is in Mₚ².

Proposition 3. A locally connected complete metric abelian topological
group has property F.

Proof. Let PX denote the space of base-pointed paths of X. Consider the
diagram

```
0 → PA → PΣ_A^φ → PΣ_A/A → 0
  ↓   ↓ψ   ↓χ
0 → A → Σ_A^r → Σ_A/A → 0
```

The top row is exact by Lemma 1 and φ has the homotopy lifting property for
finite dimensional spaces since PA is locally contractible by Michael [10, The-
orem 3.4, Proposition 4.1 and Corollary 4.2]. Let Z be finite dimensional, b:
Z × I → Σ_A/A, b': Z → Σ_A with r ∘ b' = h|Z × 0. ψ is a fibration with con-
tractible base so it has a section s: Σ_A → PΣ_A. X ∘ φ has the HLP for Z
since both X and φ do, hence there exists g: Z × I → PΣ_A with g|Z × 0 =
s ∘ b', and X ∘ φ ∘ g = h, X ∘ g is a lifting of h to Σ_A by the commutativity
of the diagram. This shows that r has the HLP for Z.

We form the diagram

```
0 → 0
↓   ↓
0 → A σ→ B φ→ C → 0
|φ| |φ'|
0 → Σ_A σ'→ P φ'→ C → 0
|r| 1rr'
Σ_A/A = Σ_A/A
↓   0
0 → 0
```

Let b: X × I → C, b': X → B with b' = h|X × 0 and X finite dimensional.
Since \mathcal{E}_A is locally contractible, ρ' has the homotopy lifting property for finite dimensional spaces again by Theorem 3.4 of [10] so there exists $g: X \times I \to P$ with $\rho' \circ g = b$ and $g|X \times 0 = \phi' \circ b'$. Since $r' \circ \phi' \circ b' = 0$ there exists $f: X \times I \to \mathcal{E}_A$ with $r \circ f = g$ and $f|X \times 0 = 0$. Since r has the HLP for X, $r' \circ (g - \sigma' \circ f) = 0$ so the range of $g - \sigma' \circ f$ lies entirely in B. Hence $\phi'^{-1} \circ (g - \sigma' \circ f)$ is defined and lifts b as required. This proves the proposition.

Proposition 4. If A, C are in \mathcal{M}_G^F, $\text{Ext}_{\mathcal{M}_G^F}(C, A) \cong \text{Ext}_{\mathcal{M}_G^C}(C, A)$.

Proof. Consider

$$
\begin{array}{c}
0 \to A \to B \\
\| \\
0 \to A \to \mathcal{E}_B \to \mathcal{E}_B/A \to 0
\end{array}
$$

with $A \in \mathcal{M}_G^F$ and $B \in \mathcal{M}_G^C$. \mathcal{E}_B is locally arcwise connected, hence \mathcal{E}_B/A is locally arcwise connected and in \mathcal{M}_G^C. Hence anything which is effaceable in \mathcal{M}_G is effaceable in \mathcal{M}_G^F and Buchsbaum's criterion is verified.

3. **Double complex.** We now assign to the topological group G a semisimplicial G-space $S(G)$. $S(G)$ is a semisimplicial object in the category of topological spaces with jointly continuous action of the group G and equivariant maps. The n-simplex S_n of this semisimplicial complex was the $(n + 1)$-fold cartesian power G^{n+1} of the space underlying the group G, and the faces and degeneracies were as follows:

- $d_0 g(g_1, g_2, \ldots, g_n) = gg_1(g_2, \ldots, g_n)$,
- $d_i g(g_1, \ldots, g_n) = g(g_1, \ldots, g_{i-1}, g_i, \ldots, g_n)$ for $0 < i < n$,
- $d_n g(g_1, \ldots, g_n) = g(g_1, \ldots, g_{n-1})$,
- $s_i g(g_1, \ldots, g_n) = g(g_1, \ldots, g_{i-1}, 1, g_i, \ldots, g_n)$.

G acts by left multiplication on the argument outside the parenthesis.

Let A be a G-module. Using the action of G on S_n and A we form the space $S_n \times_G A$ and consider the natural projections $p_n: S_n \times_G A \to S_n/G$. The faces and degeneracies of $S(G)$ induce faces and degeneracies on the $S_n \times_G A$ and on the S_n/G making them into semisimplicial spaces and these faces and degeneracies commute with the natural projections p_n. Let T_n be the sheaf of germs of continuous sections of p_n. Since the identity of A is fixed by G, there is an isomorphism of T_n with the sheaf of germs of continuous A-valued functions on S_n/G. The T_n have faces and degeneracies induced by the faces and degeneracies of $S(G)$. The T_n thus form a semisimplicial sheaf $T(G, A)$ over the S_n/G, i.e. a semisimplicial object in the category of spaces with sheaves and...
We apply the canonical semisimplicial resolution functor \([1, \text{Chapter II}]\) to the semisimplicial sheaf \(T(G, A)\). We then get a double complex of abelian groups, \(D^{p,q}(G, A) = \mathcal{J}^p(S_q/G, T_q)\) the \(p\)th stage of the canonical semisimplicial resolution of the sheaf \(T_q\) over \(S_q/G\). We denote the \(p\)th cohomology group of this double complex by \(H^{p,q}(G, A)\).

Associated to \(D^{p,q}\) is a spectral sequence with \(E_1\) term \(E_1^{p,q} = H^p(S_q/G, T_q)\), the sheaf cohomology of \(S_q/G\) with coefficient sheaf \(T_q\). Since \(S_0/G\) is a point, \(E_1^{0,0}\) is the abstract group underlying \(A\). If \(z \in A\), \(d_1(a) \in H^0(S_1/G, T_1)\) is a continuous function from \(S_1/G \cong G\) into \(A\). In fact \(d_1(a)\) maps \(g\) into \(ga - a\), hence we see that \(H^0(G, A) \cong A^G \cong \hat{H}^0(G, A)\) where \(A^G\) is the abstract group of points of \(A\) fixed by \(G\).

Now suppose \(G\) is finite dimensional. \(G\) is then locally \(Z \times N\) where \(Z\) is a simplex and \(N\) is 0-dimensional. Now let \(0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0\) be a short exact sequence in \(\mathcal{M}_G^F\). We will show \(r_+ : D^{p,q}(G, B) \rightarrow D^{p,q}(G, C)\) is surjective. If \(q = 1\) and \(I\) is a germ of a continuous map of \(G\) into \(C\), \(I\) can be represented by a continuous map \(l : Z \times N \rightarrow C\) where \(N\) is 0-dimensional and \(Z\) is a simplex. If \(z \in Z\), \(l_1 z \times N\) can be lifted by Theorem \(M\). But \(Z\) is contractible hence the lifting \(\tilde{t}\) such that \(r \circ \tilde{t} = \tilde{t}\) is guaranteed by property \(F\). Now \(D^{p,q}(G, \cdot)\) is easily seen to be left exact on \(\mathcal{J}^G\) hence exact on \(\mathcal{M}_G\). We conclude that \(H(G, \cdot)\) is an exact connected sequence of functors on \(\mathcal{M}_G^F\).

To prove effaceability we first consider the proper injection \(A \rightarrow \mathcal{E}_A\). Since \(\mathcal{E}_A\) is contractible we have by \([4, \text{Lemma 4}]\) that \(E_1^{p,q}(G, \mathcal{E}_A) = 0\) for \(p > 0\). Hence \(\hat{H}^*(G, \mathcal{E}_A)\) is given by the complex of continuous cochains. Since \(G\) is locally compact continuous cochains are effaceable, and it follows that continuous cochains are effaceable in \(\mathcal{M}_G^F\). We have verified Buchsbaum's criterion for the \(\hat{H}^*(G, A)\). Therefore:

Theorem 2. If \(G\) is locally compact, \(\sigma\)-compact, finite dimensional and \(A\) has property \(F\), \(H^*(G, A) \cong \hat{H}^*(G, A)\) described above.

4. **Spectral sequence.** In this section all groups will be finite dimensional, locally compact, \(\sigma\)-compact and all modules will be in \(\mathcal{M}_G^F\).

If \(A\) is a vector space the spectral sequence collapses from \(E_2\) onward and we get:

Theorem 3. \(H^*(G, A)\) is given by the complex of continuous cochains if \(A\) is a vector group.

Corollary. If \(G\) is a connected Lie group \(H^*(G, A) \cong H^*(G, K, A)\) the Lie algebra cohomology of \(G\) modulo the Lie algebra of a maximal compact subgroup, if \(A\) is a finite dimensional vector space on which \(G\) acts linearly and differentiably.
Proof. Hochchild and Mostow [7] have shown $H^*(G, A)$ is given by continuous cochains in this case.

Now let A be a discrete G-module. We will see that the algebraic cohomology $H^*(G, A)$ coincides with the sheaf cohomology of the classifying space. Let $\pi: E_G \rightarrow B_G$ be a principal universal G-bundle with paracompact base. There is a semisimplicial G-space whose n-simplex is the $(n+1)$-fold fiber product F_n of E_G over B_G, by regarding the $(n+1)$-fold fiber product as the set of maps of $[0, 1, \ldots, n]$ into E_G whose range is contained in a single G-orbit, G acts on $E_G \times_{B_G} E_G \times_{B_G} \cdots \times_{B_G} E_G$ by the diagonal action. Consider the sheaves of germs of continuous sections of the associated bundles $F_n \times_G A \rightarrow F_n / G$. They form a semisimplicial sheaf and by applying the canonical semisimplicial resolution functor we get a double complex which we denote by $R^{p,q}$. The injection of G into the fiber of π induces a homomorphism $R^{p,q} \rightarrow D^{p,q}(G, A)$. This induces a map from the first spectral sequence of the double complex $R^{p,q}$ into the spectral sequence described in the last section. On the E_1 terms we get the map:

$$0 \rightarrow H^*(E_G, A) \rightarrow H^*(E_G \times_{B_G} E_G, A) \rightarrow \cdots$$

But

$$0 \rightarrow H^*(\text{point}, A) \rightarrow H^*(G, A) \rightarrow \cdots$$

is homeomorphic to $E_G \times_G \cdots \times_G G$ which is homotopy equivalent to $G \times \cdots \times G$. Therefore by the homotopy axiom for sheaf cohomology with constant coefficients [2] we have an isomorphism of E_1 terms. Hence the E_{∞} terms coincide.

Now for each point x of B_G pick a section $s_x: B_G \rightarrow E_G$ which is continuous in some neighborhood of x. For an n-tuple (e_1, \ldots, e_n) in $E_G \times_{B_G} \cdots \times_{B_G} E_G$ with $\pi(e_i) = b$ define $k_x: F_n \rightarrow F_{n+1}$ by $k_x(e_1, \ldots, e_n) = (s_x(b), e_1, \ldots, e_n)$. Now an element of $R^{p,q}$ is represented by a function f: $(F^q_q)^{p+1} \rightarrow A$ so define $b: R^{p,q} \rightarrow R^{p,q-1}$ by $b_f(X_0, \ldots, X_p) = f(k_b(X_0), k_b(X_1), \ldots, k_b(X_p))$ where $b = \pi(X_0)$. b is well-defined since s_b is continuous in a neighborhood of b. Let $d: R^{p,q} \rightarrow R^{p,q+1}$ be induced by the space map. d is then the 0th differential of the second spectral sequence of the double complex $R^{p,q}$. $db + bd = \text{id}$ unless $q = 0$. The kernel of d on $R^{p,0}$ consists just of functions constant on the G-orbits of E_G. Hence the E_1 term of the second spectral sequence of $R^{p,q}$ is the canonical resolution of the locally constant sheaf A on B_G. Therefore
Theorem 4. $H^*(G, A)$ is the sheaf cohomology of the classifying space B_G with coefficients in the locally constant sheaf A, if A is a discrete G-module.

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720