Monotonically normal spaces
HTML articles powered by AMS MathViewer
- by R. W. Heath, D. J. Lutzer and P. L. Zenor
- Trans. Amer. Math. Soc. 178 (1973), 481-493
- DOI: https://doi.org/10.1090/S0002-9947-1973-0372826-2
- PDF | Request permission
Abstract:
This paper begins the study of monotone normality, a common property of linearly ordered spaces and of Borges’ stratifiable spaces. The concept of monotone normality is used to give necessary and sufficient conditions for stratifiability of a ${T_1}$-space, to give a new metrization theorem for p-spaces with ${G_\delta }$-diagonals, and to provide an easy proof of a metrization theorem due to Treybig. The paper concludes with a list of examples which relate monotone normality to certain familiar topological properties.References
- A. Arhangel′skiĭ, On a class of spaces containing all metric and all locally bicompact spaces, Dokl. Akad. Nauk SSSR 151 (1963), 751–754 (Russian). MR 0152988
- A. V. Arhangel′skiĭ, Mappings and spaces, Russian Math. Surveys 21 (1966), no. 4, 115–162. MR 0227950, DOI 10.1070/RM1966v021n04ABEH004169
- R. H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951), 175–186. MR 43449, DOI 10.4153/cjm-1951-022-3
- Garrett Birkhoff, Lattice Theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. 25, American Mathematical Society, New York, N. Y., 1948. MR 0029876
- Carlos J. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1–16. MR 188982, DOI 10.2140/pjm.1966.17.1
- Carlos J. R. Borges, On metrizability of topological spaces, Canadian J. Math. 20 (1968), 795–804. MR 231355, DOI 10.4153/CJM-1968-078-1 —, Elastic spaces are monotonically normal, Notices Amer. Math. Soc. 18 (1971), 840. Abstract #71T-G158. —, Four generalizations of stratifiable spaces, Proc. Third Prague Topology Sympos. 1971 (to appear).
- D. K. Burke and R. A. Stoltenberg, A note on $p$-spaces and Moore spaces, Pacific J. Math. 30 (1969), 601–608. MR 250268, DOI 10.2140/pjm.1969.30.601
- Eduard Čech, On bicompact spaces, Ann. of Math. (2) 38 (1937), no. 4, 823–844. MR 1503374, DOI 10.2307/1968839 —, Topological spaces, Publ. House Czech Acad. Sci., Prague, 1966; English transl., Wiley, New York, 1966. MR 35 #2254.
- Geoffrey D. Creede, Concerning semi-stratifiable spaces, Pacific J. Math. 32 (1970), 47–54. MR 254799, DOI 10.2140/pjm.1970.32.47 Z. Frolíik, On the topological product of paracompact spaces, Czechoslovak Math. J. 9 (84) (1959), 172-217. (Russian) MR 21 #3821. R. W. Heath, Semi-metrizable spaces and related topic, Topology Conference, Arizona State University, Tempe, Ariz., 1967, pp. 153-161.
- R. W. Heath, An easier proof that a certain countable space is not stratifiable. , Proc. Washington State Univ. Conf. on General Topology (Pullman, Wash., 1970) Washington State University, Department of Mathematics, Pi Mu Epsilon, Pullman, Wash., 1970, pp. 56–59. MR 0266135 —, An ${\aleph _0}$-space which is not stratifiable, Notices Amer. Math. Soc. 17 (1970), 1040, Abstract #679-G24. R. W. Heath and D. J. Lutzer, A note on monotone normality, Notices Amer. Math. Soc. 18 (1971), 783. Abstract #687-54-1. —, A characterization of monotone normality, Notices Amer. Math. Soc. 18 (1971), 1066. Abstract #689-G8.
- Miroslaw Katětov, Complete normality of Cartesian products, Fund. Math. 35 (1948), 271–274. MR 27501, DOI 10.4064/fm-35-1-271-274
- David J. Lutzer, On generalized ordered spaces, Proc. Washington State Univ. Conf. on General Topology (Pullman, Wash., 1970) Washington State University, Department of Mathematics, Pi Mu Epsilon, Pullman, Wash., 1970, pp. 102–110. MR 0266167
- D. J. Lutzer and H. R. Bennett, Separability, the countable chain condition and the Lindelöf property in linearly orderable spaces, Proc. Amer. Math. Soc. 23 (1969), 664–667. MR 248762, DOI 10.1090/S0002-9939-1969-0248762-3
- M. J. Mansfield, Some generalizations of full normality, Trans. Amer. Math. Soc. 86 (1957), 489–505. MR 93753, DOI 10.1090/S0002-9947-1957-0093753-5
- E. Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), 375–376. MR 152985, DOI 10.1090/S0002-9904-1963-10931-3
- E. Michael, $\aleph _{0}$-spaces, J. Math. Mech. 15 (1966), 983–1002. MR 0206907
- Kiiti Morita, Products of normal spaces with metric spaces, Math. Ann. 154 (1964), 365–382. MR 165491, DOI 10.1007/BF01362570
- R. H. Sorgenfrey, On the topological product of paracompact spaces, Bull. Amer. Math. Soc. 53 (1947), 631–632. MR 20770, DOI 10.1090/S0002-9904-1947-08858-3
- Lynn A. Steen, A direct proof that a linearly ordered space is hereditarily collectionwise normal, Proc. Amer. Math. Soc. 24 (1970), 727–728. MR 257985, DOI 10.1090/S0002-9939-1970-0257985-7
- L. B. Treybig, Concerning continuous images of compact ordered spaces, Proc. Amer. Math. Soc. 15 (1964), 866–871. MR 167953, DOI 10.1090/S0002-9939-1964-0167953-9 P. Zenor, Monotonically normal spaces, Notices Amer. Math. Soc. 17 (1970), 1034, Abstract #679-G2.
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 178 (1973), 481-493
- MSC: Primary 54E20
- DOI: https://doi.org/10.1090/S0002-9947-1973-0372826-2
- MathSciNet review: 0372826