## Monotonically normal spaces

HTML articles powered by AMS MathViewer

- by R. W. Heath, D. J. Lutzer and P. L. Zenor
- Trans. Amer. Math. Soc.
**178**(1973), 481-493 - DOI: https://doi.org/10.1090/S0002-9947-1973-0372826-2
- PDF | Request permission

## Abstract:

This paper begins the study of monotone normality, a common property of linearly ordered spaces and of Borges’ stratifiable spaces. The concept of monotone normality is used to give necessary and sufficient conditions for stratifiability of a ${T_1}$-space, to give a new metrization theorem for*p*-spaces with ${G_\delta }$-diagonals, and to provide an easy proof of a metrization theorem due to Treybig. The paper concludes with a list of examples which relate monotone normality to certain familiar topological properties.

## References

- A. Arhangel′skiĭ,
*On a class of spaces containing all metric and all locally bicompact spaces*, Dokl. Akad. Nauk SSSR**151**(1963), 751–754 (Russian). MR**0152988** - A. V. Arhangel′skiĭ,
*Mappings and spaces*, Russian Math. Surveys**21**(1966), no. 4, 115–162. MR**0227950**, DOI 10.1070/RM1966v021n04ABEH004169 - R. H. Bing,
*Metrization of topological spaces*, Canad. J. Math.**3**(1951), 175–186. MR**43449**, DOI 10.4153/cjm-1951-022-3 - Garrett Birkhoff,
*Lattice Theory*, Revised edition, American Mathematical Society Colloquium Publications, Vol. 25, American Mathematical Society, New York, N. Y., 1948. MR**0029876** - Carlos J. R. Borges,
*On stratifiable spaces*, Pacific J. Math.**17**(1966), 1–16. MR**188982**, DOI 10.2140/pjm.1966.17.1 - Carlos J. R. Borges,
*On metrizability of topological spaces*, Canadian J. Math.**20**(1968), 795–804. MR**231355**, DOI 10.4153/CJM-1968-078-1
—, - D. K. Burke and R. A. Stoltenberg,
*A note on $p$-spaces and Moore spaces*, Pacific J. Math.**30**(1969), 601–608. MR**250268**, DOI 10.2140/pjm.1969.30.601 - Eduard Čech,
*On bicompact spaces*, Ann. of Math. (2)**38**(1937), no. 4, 823–844. MR**1503374**, DOI 10.2307/1968839
—, - Geoffrey D. Creede,
*Concerning semi-stratifiable spaces*, Pacific J. Math.**32**(1970), 47–54. MR**254799**, DOI 10.2140/pjm.1970.32.47
Z. Frolíik, - R. W. Heath,
*An easier proof that a certain countable space is not stratifiable.*, Proc. Washington State Univ. Conf. on General Topology (Pullman, Wash., 1970) Washington State University, Department of Mathematics, Pi Mu Epsilon, Pullman, Wash., 1970, pp. 56–59. MR**0266135**
—, - Miroslaw Katětov,
*Complete normality of Cartesian products*, Fund. Math.**35**(1948), 271–274. MR**27501**, DOI 10.4064/fm-35-1-271-274 - David J. Lutzer,
*On generalized ordered spaces*, Proc. Washington State Univ. Conf. on General Topology (Pullman, Wash., 1970) Washington State University, Department of Mathematics, Pi Mu Epsilon, Pullman, Wash., 1970, pp. 102–110. MR**0266167** - D. J. Lutzer and H. R. Bennett,
*Separability, the countable chain condition and the Lindelöf property in linearly orderable spaces*, Proc. Amer. Math. Soc.**23**(1969), 664–667. MR**248762**, DOI 10.1090/S0002-9939-1969-0248762-3 - M. J. Mansfield,
*Some generalizations of full normality*, Trans. Amer. Math. Soc.**86**(1957), 489–505. MR**93753**, DOI 10.1090/S0002-9947-1957-0093753-5 - E. Michael,
*The product of a normal space and a metric space need not be normal*, Bull. Amer. Math. Soc.**69**(1963), 375–376. MR**152985**, DOI 10.1090/S0002-9904-1963-10931-3 - E. Michael,
*$\aleph _{0}$-spaces*, J. Math. Mech.**15**(1966), 983–1002. MR**0206907** - Kiiti Morita,
*Products of normal spaces with metric spaces*, Math. Ann.**154**(1964), 365–382. MR**165491**, DOI 10.1007/BF01362570 - R. H. Sorgenfrey,
*On the topological product of paracompact spaces*, Bull. Amer. Math. Soc.**53**(1947), 631–632. MR**20770**, DOI 10.1090/S0002-9904-1947-08858-3 - Lynn A. Steen,
*A direct proof that a linearly ordered space is hereditarily collectionwise normal*, Proc. Amer. Math. Soc.**24**(1970), 727–728. MR**257985**, DOI 10.1090/S0002-9939-1970-0257985-7 - L. B. Treybig,
*Concerning continuous images of compact ordered spaces*, Proc. Amer. Math. Soc.**15**(1964), 866–871. MR**167953**, DOI 10.1090/S0002-9939-1964-0167953-9
P. Zenor,

*Elastic spaces are monotonically normal*, Notices Amer. Math. Soc.

**18**(1971), 840. Abstract #71T-G158. —,

*Four generalizations of stratifiable spaces*, Proc. Third Prague Topology Sympos. 1971 (to appear).

*Topological spaces*, Publ. House Czech Acad. Sci., Prague, 1966; English transl., Wiley, New York, 1966. MR

**35**#2254.

*On the topological product of paracompact spaces*, Czechoslovak Math. J. 9 (84) (1959), 172-217. (Russian) MR

**21**#3821. R. W. Heath,

*Semi-metrizable spaces and related topic*, Topology Conference, Arizona State University, Tempe, Ariz., 1967, pp. 153-161.

*An*${\aleph _0}$-

*space which is not stratifiable*, Notices Amer. Math. Soc.

**17**(1970), 1040, Abstract #679-G24. R. W. Heath and D. J. Lutzer,

*A note on monotone normality*, Notices Amer. Math. Soc.

**18**(1971), 783. Abstract #687-54-1. —,

*A characterization of monotone normality*, Notices Amer. Math. Soc.

**18**(1971), 1066. Abstract #689-G8.

*Monotonically normal spaces*, Notices Amer. Math. Soc.

**17**(1970), 1034, Abstract #679-G2.

## Bibliographic Information

- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**178**(1973), 481-493 - MSC: Primary 54E20
- DOI: https://doi.org/10.1090/S0002-9947-1973-0372826-2
- MathSciNet review: 0372826