Multiplicities of second order linear recurrences
HTML articles powered by AMS MathViewer
- by Ronald Alter and K. K. Kubota
- Trans. Amer. Math. Soc. 178 (1973), 271-284
- DOI: https://doi.org/10.1090/S0002-9947-1973-0441841-2
- PDF | Request permission
Abstract:
A second order linear recurrence is a sequence $\{ {a_n}\}$ of integers satisfying a ${a_{n + 2}} = M{a_{n + 1}} - N{a_n}$ where N and M are fixed integers and at least one ${a_n}$ is nonzero. If k is an integer, then the number $m(k)$ of solutions of ${a_n} = k$ is at most 3 (respectively 4) if ${M^2} - 4N < 0$ and there is an odd prime $q \ne 3$ (respectively q = 3) such that $q|M$ and $q\nmid kN$. Further $M = {\sup _k}{\;_{{\text {integer}}}}m(k)$ is either infinite or $\leq 5$ provided that either (i) $(M,N) = 1$ or (ii) $6\nmid N$.References
- R. Alter and K. K. Kubota, The diophantine equation ${x^2} + 11 = {3^n}$, and a related sequence, J. Number Theory (to appear).
- Roger Apéry, Sur une équation diophantienne, C. R. Acad. Sci. Paris 251 (1960), 1263–1264 (French). MR 120194
- P. Chowla, S. Chowla, M. Dunton, and D. J. Lewis, Some diophantine equations in quadratic number fields, Norske Vid. Selsk. Forh., Trondheim 31 (1958), 181–183. MR 0105390
- S. Chowla, M. Dunton, and D. J. Lewis, Linear recurrences of order two, Pacific J. Math. 11 (1961), 833–845. MR 136569, DOI 10.2140/pjm.1961.11.833
- R. R. Laxton, Linear recurrences of order two, J. Austral. Math. Soc. 7 (1967), 108–114. MR 0207674, DOI 10.1017/S1446788700005139
- D. J. Lewis, Diophantine equations: $p$-adic methods, Studies in Number Theory, Math. Assoc. America, Buffalo, N.Y.; distributed by Prentice-Hall, Englewood Cliffs, N.J., 1969, pp. 25–75. MR 0241359
- Andrzej Schinzel, The intrinsic divisors of Lehmer numbers in the case of negative discriminant, Ark. Mat. 4 (1962), 413–416 (1962). MR 139567, DOI 10.1007/BF02591623
- Thoralf Skolem, S. Chowla, and D. J. Lewis, The diophantine equation $2^{n+2}-7=x^{2}$ and related problems, Proc. Amer. Math. Soc. 10 (1959), 663–669. MR 109137, DOI 10.1090/S0002-9939-1959-0109137-4
- Morgan Ward, The null divisors of linear recurring series, Duke Math. J. 2 (1936), no. 3, 472–476. MR 1545940, DOI 10.1215/S0012-7094-36-00240-5 —, Some diophantine problems connected with linear recurrences, Report of the Institute of the Theory of Numbers, University of Colorado, Boulder, 1959, pp. 250-257.
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 178 (1973), 271-284
- MSC: Primary 10A35; Secondary 10B05
- DOI: https://doi.org/10.1090/S0002-9947-1973-0441841-2
- MathSciNet review: 0441841