Algebraic extensions of difference fields
HTML articles powered by AMS MathViewer
- by Peter Evanovich
- Trans. Amer. Math. Soc. 179 (1973), 1-22
- DOI: https://doi.org/10.1090/S0002-9947-1973-0314809-4
- PDF | Request permission
Abstract:
An inversive difference field $\mathcal {K}$ is a field K together with a finite number of automorphisms of K. This paper studies inversive extensions of inversive difference fields whose underlying field extensions are separable algebraic. The principal tool in our investigations is a Galois theory, first developed by A. E. Babbitt, Jr. for finite dimensional extensions of ordinary difference fields and extended in this work to partial difference field extensions whose underlying field extensions are infinite dimensional Galois. It is shown that if $\mathcal {L}$ is a finitely generated separable algebraic inversive extension of an inversive partial difference field $\mathcal {K}$ and the automorphisms of $\mathcal {K}$ commute on the underlying field of $\mathcal {K}$ then every inversive subextension of $\mathcal {L}/\mathcal {K}$ is finitely generated. For ordinary difference fields the paper makes a study of the structure of benign extensions, the group of difference automorphisms of a difference field extension, and two types of extensions which play a significant role in the study of difference algebra: monadic extensions (difference field extensions $\mathcal {L}/\mathcal {K}$ having at most one difference isomorphism into any extension of $\mathcal {K}$) and incompatible extensions (extensions $\mathcal {L}/\mathcal {K},\mathcal {M}/\mathcal {K}$ having no difference field compositum).References
- Albert E. Babbitt Jr., Finitely generated pathological extensions of difference fields, Trans. Amer. Math. Soc. 102 (1962), 63–81. MR 133326, DOI 10.1090/S0002-9947-1962-0133326-0
- N. Bourbaki, Éléments de mathématique. XI. Première partie: Les structures fondamentales de l’analyse. Livre II: Algèbre. Chapitre IV: Polynomes et fractions rationnelles. Chapitre V: Corps commutatifs, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1102, Hermann & Cie, Paris, 1950 (French). MR 0035759 —, Éléments de mathématique. Part I. Les structures fondamentales de l’ analyse. Livre III: Topologie générale. Chap. I, Actualités Sci. Indust., no. 858, Hermann, Paris, 1940. MR 3, 55.
- Richard M. Cohn, Difference algebra, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1965. MR 0205987
- Nathan Jacobson, Lectures in abstract algebra. Vol III: Theory of fields and Galois theory, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London-New York, 1964. MR 0172871, DOI 10.1007/978-1-4612-9872-4
- Serge Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 0197234
- Deane Montgomery and Leo Zippin, Topological transformation groups, Interscience Publishers, New York-London, 1955. MR 0073104 L. S. Pontrjagin, Continuous groups, GITTL, Moscow, 1938; English transl., Topological groups, Princeton Math. Series, vol. 2, Princeton Univ. Press, Princeton, N. J., 1939. MR 1, 44.
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 179 (1973), 1-22
- MSC: Primary 12H10
- DOI: https://doi.org/10.1090/S0002-9947-1973-0314809-4
- MathSciNet review: 0314809