On embedding set functions into covariance functions
HTML articles powered by AMS MathViewer
- by G. D. Allen
- Trans. Amer. Math. Soc. 179 (1973), 23-33
- DOI: https://doi.org/10.1090/S0002-9947-1973-0315774-6
- PDF | Request permission
Abstract:
We consider any continuous hermitian kernel $M(\Delta ,\Delta ’)$ on $\mathcal {P} \times \mathcal {P}$ where $\mathcal {P}$ is the prering of intervals of [0,1]. Conditions on M are given to find an interval covariance function $K(\Delta ,\Delta ’)$ so that $K(\Delta ,\Delta ’) = M(\Delta ,\Delta ’)$ for all nonoverlapping $\Delta$ and $\Delta ’$ in $\mathcal {P}$. The problem is solved by first treating finite hermitian matrices A and finding a positive definite matrix B so that ${b_{ij}} = {a_{ij}},i \ne j$, so that tr B is minimized. Using natural correspondence between interval covariance functions and stochastic processes, a decomposition theorem is derived for stochastic processes of bounded quadratic variation into an orthogonal process and a process having minimal quadratic variation.References
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896
- Paul Lévy, Processus stochastiques et mouvement brownien, Gauthier-Villars & Cie, Paris, 1965 (French). Suivi d’une note de M. Loève; Deuxième édition revue et augmentée. MR 0190953
- P. Masani, Orthogonally scattered measures, Advances in Math. 2 (1968), 61–117. MR 228651, DOI 10.1016/0001-8708(68)90018-2 L. C. Young, Some new stochastic integrals. I. Analogues of Hardy-Littlewood classes, Advances in Probability 2 (1970), 163-240.
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 179 (1973), 23-33
- MSC: Primary 60G05
- DOI: https://doi.org/10.1090/S0002-9947-1973-0315774-6
- MathSciNet review: 0315774