The measure algebra of a locally compact hypergroup
HTML articles powered by AMS MathViewer
- by Charles F. Dunkl
- Trans. Amer. Math. Soc. 179 (1973), 331-348
- DOI: https://doi.org/10.1090/S0002-9947-1973-0320635-2
- PDF | Request permission
Abstract:
A hypergroup is a locally compact space on which the space of finite regular Borel measures has a convolution structure preserving the probability measures. This paper deals only with commutative hypergroups. §1 contains definitions, a discussion of invariant measures, and a characterization of idempotent probability measures. §2 deals with the characters of a hypergroup. §3 is about hypergroups, which have generalized translation operators (in the sense of Levitan), and subhypergroups of such. In this case the set of characters provides much information. Finally §4 discusses examples, such as the space of conjugacy classes of a compact group, certain compact homogeneous spaces, ultraspherical series, and finite hypergroups.References
- Richard Askey, Orthogonal polynomials and positivity, Math. Centrum Amsterdam Afd. Toegepaste Wisk. Rep. (1969), ii+34. MR 247356
- A. P. Dietzman, On the multigroups of complete conjugate sets of elements of a group, C. R. (Doklady) Acad. Sci. URSS (N.S.) 49 (1946), 315–317. MR 0016105
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Charles F. Dunkl, Operators and harmonic analysis on the sphere, Trans. Amer. Math. Soc. 125 (1966), 250–263. MR 203371, DOI 10.1090/S0002-9947-1966-0203371-9
- Charles F. Dunkl and Donald E. Ramirez, Topics in harmonic analysis, The Appleton-Century Mathematics Series, Appleton-Century-Crofts [Meredith Corporation], New York, 1971. MR 0454515
- George Gasper, Linearization of the product of Jacobi polynomials. I, Canadian J. Math. 22 (1970), 171–175. MR 257433, DOI 10.4153/CJM-1970-020-2
- Irving Glicksberg, Convolution semigroups of measures, Pacific J. Math. 9 (1959), 51–67. MR 108690, DOI 10.2140/pjm.1959.9.51
- A. Grothendieck, Critères de compacité dans les espaces fonctionnels généraux, Amer. J. Math. 74 (1952), 168–186 (French). MR 47313, DOI 10.2307/2372076 I. Hirschman, Harmonic analysis and ultraspherical polynomials, Proc. Conference on Harmonic Analysis, Cornell University, Ithaca, N.Y., 1956.
- Satoru Igari and Yoshikazu Uno, Banach algebra related to the Jacobi polynomials, Tohoku Math. J. (2) 21 (1969), 668–673; correction, ibid. (2) 22 (1970), 142. MR 433123, DOI 10.2748/tmj/1178242910
- B. M. Levitan, The application of generalized displacement operators to linear differential equations of the second order, Uspehi Matem. Nauk (N.S.) 4 (1949), no. 1(29), 3–112 (Russian). MR 0031195 M. A. Naĭmark, Normed rings, GITTL, Moscow, 1956; rev. ed., English transl., Noordhoff, Groningen, 1964. MR 19, 870; MR 34 #4928.
- David L. Ragozin, Central measures on compact simple Lie groups, J. Functional Analysis 10 (1972), 212–229. MR 0340965, DOI 10.1016/0022-1236(72)90050-x
- Daniel Rider, Central idempotent measures on unitary groups, Canadian J. Math. 22 (1970), 719–725. MR 264333, DOI 10.4153/CJM-1970-082-5
- M. Rosenblatt, Limits of convolution sequences of measures on a compact topological semigroup, J. Math. Mech. 9 (1960), 293–305. MR 0118773, DOI 10.1512/iumj.1960.9.59017
- D. Vere-Jones, Finite bivariate distributions and semigroups of non-negative matrices, Quart. J. Math. Oxford Ser. (2) 22 (1971), 247–270. MR 289542, DOI 10.1093/qmath/22.2.247
- Richard Askey and Isidore Hirschman Jr., Weighted quadratic norms and ultraspherical polynomials. I, Trans. Amer. Math. Soc. 91 (1959), 294–313. MR 107772, DOI 10.1090/S0002-9947-1959-0107772-5
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 179 (1973), 331-348
- MSC: Primary 43A10; Secondary 22A20
- DOI: https://doi.org/10.1090/S0002-9947-1973-0320635-2
- MathSciNet review: 0320635