Concerning the shapes of finite-dimensional compacta
HTML articles powered by AMS MathViewer
- by Ross Geoghegan and R. Richard Summerhill
- Trans. Amer. Math. Soc. 179 (1973), 281-292
- DOI: https://doi.org/10.1090/S0002-9947-1973-0324637-1
- PDF | Request permission
Abstract:
It is shown that two “tamely” embedded compacta of dimension $\leq k$ lying in ${E^n}(n \geq 2k + 2)$ have the same (Borsuk) shape if and only if their complements are homeomorphic. In particular, two k-dimensional closed submanifolds of ${E^{2k + 2}}$ have the same homotopy type if and only if their complements are homeomorphic.References
- R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365–383. MR 214041, DOI 10.1307/mmj/1028999787
- R. H. Bing and J. M. Kister, Taming complexes in hyperplanes, Duke Math. J. 31 (1964), 491–511. MR 164329
- Karol Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), 223–254. MR 229237, DOI 10.4064/fm-62-3-223-254
- K. Borsuk, Remark on a theorem of S. Mardešić, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 475–483 (English, with Russian summary). MR 324636
- J. L. Bryant, On embeddings of compacta in Euclidean space, Proc. Amer. Math. Soc. 23 (1969), 46–51. MR 244973, DOI 10.1090/S0002-9939-1969-0244973-1
- J. L. Bryant, On embeddings of $1$-dimensional compacta in $E^{5}$, Duke Math. J. 38 (1971), 265–270. MR 275397, DOI 10.1215/S0012-7094-71-03834-8
- J. L. Bryant and C. L. Seebeck III, An equivalence theorem for embeddings of compact absolute neighborhood retracts, Proc. Amer. Math. Soc. 20 (1969), 256–258. MR 244972, DOI 10.1090/S0002-9939-1969-0244972-X
- T. A. Chapman, On some applications of infinite-dimensional manifolds to the theory of shape, Fund. Math. 76 (1972), no. 3, 181–193. MR 320997, DOI 10.4064/fm-76-3-181-193
- T. A. Chapman, Shapes of finite-dimensional compacta, Fund. Math. 76 (1972), no. 3, 261–276. MR 320998, DOI 10.4064/fm-76-3-261-276
- Ross Geoghegan and R. Richard Summerhill, Infinite-dimensional methods in finite-dimensional geometric topology, Bull. Amer. Math. Soc. 78 (1972), 1009–1014. MR 312501, DOI 10.1090/S0002-9904-1972-13086-6
- Herman Gluck, Embeddings in the trivial range, Ann. of Math. (2) 81 (1965), 195–210. MR 173243, DOI 10.2307/1970614
- D. W. Henderson, Applications of infinite-dimensional manifolds to quotient spaces of complete ANR’s, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 748–753 (English, with Russian summary). MR 307142
- J. F. P. Hudson, Piecewise linear topology, W. A. Benjamin, Inc., New York-Amsterdam, 1969. University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees. MR 0248844
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
- D. R. McMillan Jr., Taming Cantor sets in $E^{n}$, Bull. Amer. Math. Soc. 70 (1964), 706–708. MR 164331, DOI 10.1090/S0002-9904-1964-11177-0
- M. A. Štan′ko, Imbedding of compacta in euclidean space, Mat. Sb. (N.S.) 83 (125) (1970), 234–255 (Russian). MR 0271923, DOI 10.1070/SM1970v012n02ABEH000919
- H. G. Bothe, A tangled $1$-dimensional continuum in $E^{3}$ which has the cube-with-handles property, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 481–486 (English, with Russian summary). MR 314034
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 179 (1973), 281-292
- MSC: Primary 54C56
- DOI: https://doi.org/10.1090/S0002-9947-1973-0324637-1
- MathSciNet review: 0324637