Euclidean $n$-space modulo an $(n-1)$-cell
HTML articles powered by AMS MathViewer
- by J. L. Bryant
- Trans. Amer. Math. Soc. 179 (1973), 181-192
- DOI: https://doi.org/10.1090/S0002-9947-1973-0324703-0
- PDF | Request permission
Abstract:
This paper, together with another paper by the author titled similarly, provides a complete answer to a conjecture raised by Andrews and Curtis: if D is a k-cell topologically embedded in euclidean n-space ${E^n}$, then ${E^n}/D \times {E^1}$ is homeomorphic to ${E^{n + 1}}$. Although there is at present only one case outstanding ($n \geqslant 4$ and $k = n - 1$), the proof we give here works whenever $n \geqslant 4$. We resolve this conjecture (for $n \geqslant 4$) by proving a stronger result: if $Y \times {E^1} \approx {E^{n + 1}}$ and if D is a k-cell in Y, then $Y/D \times {E^1} \approx {E^{n + 1}}$. This theorem was proved by Glaser for $k \leqslant n - 2$ and has as a corollary: if K is a collapsible polyhedron topologically embedded in ${E^n}$, then ${E^n}/K \times {E^1} \approx {E^{n + 1}}$. Our method of proof uses radial engulfing and a well-known procedure devised by Bing.References
- J. J. Andrews and M. L. Curtis, $n$-space modulo an arc, Ann. of Math. (2) 75 (1962), 1–7. MR 139153, DOI 10.2307/1970414
- R. H. Bing, The cartesian product of a certain nonmanifold and a line is $E^{4}$, Ann. of Math. (2) 70 (1959), 399–412. MR 107228, DOI 10.2307/1970322
- R. H. Bing, Radial engulfing, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 1–18. MR 0238284
- John L. Bryant, Euclidean space modulo a cell, Fund. Math. 63 (1968), 43–51. MR 230298, DOI 10.4064/fm-63-1-43-51
- J. L. Bryant and C. L. Seebeck III, Locally nice embeddings in codimension three, Quart. J. Math. Oxford Ser. (2) 21 (1970), 265–272. MR 290376, DOI 10.1093/qmath/21.3.265 A. V. Černavskiĭ, Locally homotopic unknotted imbeddings of manifolds, Dokl. Akad. Nauk SSSR 181 (1967), 290-293 = Soviet Math. Dokl. 8 (1967), 835-839. MR 38 #720.
- David S. Gillman, Unknotting $2$-manifolds in $3$-hyperplanes of $E^{4}$, Duke Math. J. 33 (1966), 229–245. MR 189014
- Leslie C. Glaser, Euclidean $(q+r)$-space modulo an $r$-plane of collapsible $p$-complexes, Trans. Amer. Math. Soc. 157 (1971), 261–278. MR 276943, DOI 10.1090/S0002-9947-1971-0276943-5
- O. G. Harrold Jr., Euclidean domains with uniformly Abelian local fundamental groups, Trans. Amer. Math. Soc. 67 (1949), 120–129. MR 33018, DOI 10.1090/S0002-9947-1949-0033018-6 W. Hurewicz, Homotopie, Homologie, und lokaler Zusammenhaug, Fund. Math. 25 (1935), 467-485.
- V. L. Klee Jr., Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30–45. MR 69388, DOI 10.1090/S0002-9947-1955-0069388-5
- M. H. A. Newman, Local connection in locally compact spaces, Proc. Amer. Math. Soc. 1 (1950), 44–53. MR 33530, DOI 10.1090/S0002-9939-1950-0033530-3
- C. L. Seebeck III, Collaring and $(n-1)$-manifold in an $n$-manifold, Trans. Amer. Math. Soc. 148 (1970), 63–68. MR 258045, DOI 10.1090/S0002-9947-1970-0258045-6
- John Stallings, On topologically unknotted spheres, Ann. of Math. (2) 77 (1963), 490–503. MR 149458, DOI 10.2307/1970127
- Raymond Louis Wilder, Topology of Manifolds, American Mathematical Society Colloquium Publications, Vol. 32, American Mathematical Society, New York, N. Y., 1949. MR 0029491, DOI 10.1090/coll/032
- Perrin Wright, Radial engulfing in codimension three, Duke Math. J. 38 (1971), 295–298. MR 281214 E. C. Zeeman, Seminar on combinatorial topology, Inst. Hautes Études Sci., Paris, 1963 (mimeographed notes).
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 179 (1973), 181-192
- MSC: Primary 57A15; Secondary 57A30
- DOI: https://doi.org/10.1090/S0002-9947-1973-0324703-0
- MathSciNet review: 0324703