Euclidean $n$-space modulo an $(n-1)$-cell
HTML articles powered by AMS MathViewer
- by J. L. Bryant
- Trans. Amer. Math. Soc. 179 (1973), 181-192
- DOI: https://doi.org/10.1090/S0002-9947-1973-0324703-0
- PDF | Request permission
Abstract:
This paper, together with another paper by the author titled similarly, provides a complete answer to a conjecture raised by Andrews and Curtis: if D is a k-cell topologically embedded in euclidean n-space ${E^n}$, then ${E^n}/D \times {E^1}$ is homeomorphic to ${E^{n + 1}}$. Although there is at present only one case outstanding ($n \geqslant 4$ and $k = n - 1$), the proof we give here works whenever $n \geqslant 4$. We resolve this conjecture (for $n \geqslant 4$) by proving a stronger result: if $Y \times {E^1} \approx {E^{n + 1}}$ and if D is a k-cell in Y, then $Y/D \times {E^1} \approx {E^{n + 1}}$. This theorem was proved by Glaser for $k \leqslant n - 2$ and has as a corollary: if K is a collapsible polyhedron topologically embedded in ${E^n}$, then ${E^n}/K \times {E^1} \approx {E^{n + 1}}$. Our method of proof uses radial engulfing and a well-known procedure devised by Bing.References
- J. J. Andrews and M. L. Curtis, $n$-space modulo an arc, Ann. of Math. (2) 75 (1962), 1β7. MR 139153, DOI 10.2307/1970414
- R. H. Bing, The cartesian product of a certain nonmanifold and a line is $E^{4}$, Ann. of Math. (2) 70 (1959), 399β412. MR 107228, DOI 10.2307/1970322
- R. H. Bing, Radial engulfing, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) Prindle, Weber & Schmidt, Boston, Mass., 1968, pp.Β 1β18. MR 0238284
- John L. Bryant, Euclidean space modulo a cell, Fund. Math. 63 (1968), 43β51. MR 230298, DOI 10.4064/fm-63-1-43-51
- J. L. Bryant and C. L. Seebeck III, Locally nice embeddings in codimension three, Quart. J. Math. Oxford Ser. (2) 21 (1970), 265β272. MR 290376, DOI 10.1093/qmath/21.3.265 A. V. ΔernavskiΔ, Locally homotopic unknotted imbeddings of manifolds, Dokl. Akad. Nauk SSSR 181 (1967), 290-293 = Soviet Math. Dokl. 8 (1967), 835-839. MR 38 #720.
- David S. Gillman, Unknotting $2$-manifolds in $3$-hyperplanes of $E^{4}$, Duke Math. J. 33 (1966), 229β245. MR 189014
- Leslie C. Glaser, Euclidean $(q+r)$-space modulo an $r$-plane of collapsible $p$-complexes, Trans. Amer. Math. Soc. 157 (1971), 261β278. MR 276943, DOI 10.1090/S0002-9947-1971-0276943-5
- O. G. Harrold Jr., Euclidean domains with uniformly Abelian local fundamental groups, Trans. Amer. Math. Soc. 67 (1949), 120β129. MR 33018, DOI 10.1090/S0002-9947-1949-0033018-6 W. Hurewicz, Homotopie, Homologie, und lokaler Zusammenhaug, Fund. Math. 25 (1935), 467-485.
- V. L. Klee Jr., Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30β45. MR 69388, DOI 10.1090/S0002-9947-1955-0069388-5
- M. H. A. Newman, Local connection in locally compact spaces, Proc. Amer. Math. Soc. 1 (1950), 44β53. MR 33530, DOI 10.1090/S0002-9939-1950-0033530-3
- C. L. Seebeck III, Collaring and $(n-1)$-manifold in an $n$-manifold, Trans. Amer. Math. Soc. 148 (1970), 63β68. MR 258045, DOI 10.1090/S0002-9947-1970-0258045-6
- John Stallings, On topologically unknotted spheres, Ann. of Math. (2) 77 (1963), 490β503. MR 149458, DOI 10.2307/1970127
- Raymond Louis Wilder, Topology of Manifolds, American Mathematical Society Colloquium Publications, Vol. 32, American Mathematical Society, New York, N. Y., 1949. MR 0029491, DOI 10.1090/coll/032
- Perrin Wright, Radial engulfing in codimension three, Duke Math. J. 38 (1971), 295β298. MR 281214 E. C. Zeeman, Seminar on combinatorial topology, Inst. Hautes Γtudes Sci., Paris, 1963 (mimeographed notes).
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 179 (1973), 181-192
- MSC: Primary 57A15; Secondary 57A30
- DOI: https://doi.org/10.1090/S0002-9947-1973-0324703-0
- MathSciNet review: 0324703