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SOME STABLE RESULTS ON THE COHOMOLOGY OF THE

CLASSICAL INFINITE-DIMENSIONAL LIE ALGEBRAS

BY

VICTOR GUILLEMIN AND STEVEN SHNIDER(l)

ABSTRACT. In this paper we compute the cohomology of various classical infinite-

dimensional Lie algebras generalizing results of Gel'fand-Fuks for the Lie algebra of all

formal power series vector fields.

1. Let fe be a field of characteristic zero and xx, x2,...,yx,y2,..., etc.

indeterminants. For us the classical infinite-dimensional Lie algebras will mean

simply the Lie algebras occurring on the following list.

(I)„ Formal power series vector fields. This is just all expressions of the form

2f=i f¡(d/dx¡), where/ G k[[xx,... ,x„]]. The bracket is the usual Lie bracket.

(II)„ Divergence zero formal power series vector fields. The subalgebra of (I)„

consisting of all / = 2 f¡(d/dx¡) for which div / = 2 (9^/3x,-) = 0.

(Ill),, Divergence constant formal power series vector fields. The subalgebra of

(I)„ consisting of all / for which div / G fe.

(IV)2„ FAe Poisson algebra. As a vector space this is k[[xx,... ,x„,yx,... ,yn]],

and the bracket operation is the Poisson bracket:

u'8)     ^dx^y,     dx,dy,'

(V)2„ FAe Hamiltonian algebra. The Poisson algebra over its one-dimensional

center.

(VI)2n FAe derivation algebra of the Hamiltonian algebra. Since there is just one

outer derivation, this contains the Hamiltonian algebra as a codimension one

ideal.

(VII)2n+1 FAe contact algebra. As a vector space this is k[[xx,... ,xn,yx,...,

y„z]]. The bracket operation is the Lagrange bracket:

[/,*)-(/,»>„ 4V2»iO-£('-2*0
In this paper we will compute the cohomology of each of these algebras (with

coefficients in fe) for the range 0 </'<«. It turns out that in this range the

answer in each case is independent of « and rather simple. In certain cases our
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results can be considerably improved. For example Gel'fand and Fuks computed

the entire cohomology ring of (I)„ in [2]; and, with slight modifications, their

computation also works for (III)„. (See [7].) A complete picture of the range

0 < /' < 2n has been obtained by the second author for all the above examples

except (II)„ and (VII)2n+1. (See [7] and the remarks at the end of §4.) However,

these improved results seem to require much more delicate arguments than

ours. (2)

2. Let F be a Lie algebra over k,(3) A an abelian subalgebra, and S(A) the

symmetric algebra over A. We note that F and L* are both modules for S(A). In

fact A acts on both F and L* by the adjoint representation; therefore, so does

the universal enveloping algebra of A, which happens to be S(A) since A is

abelian.
We begin with the basic theorem:

Theorem 1. Let L be a Lie algebra over k, A a finite-dimensional abelian

subalgebra, and a an element of L. Assume that L* is free as a module over S(A).

Assume also that a acts semis imply on L and that A is contained in a nonzero

eigenspace. Then H'(L, II) = 0 for 0 < / < dim A.

Proof. Let m = dim A, and consider the Koszul complex:

0 -* S(A) -* S(A) ® A* -> ... -» S(A) ® Am(A*)
(2.1) fc

-h> S(A)/S+(A) ® Am(A*) -+ 0

where S+(A) is the maximal ideal of S(A) of elements of degree > 0. Taking the

tensor product over S(A) with AF*, which is free over S(A), we get an exact

sequence:

0^ A(L*) ® A* -^-+...
(2.2),

-^ AL* ® AmA* -+ ALVS+AF* ® AmA* -> 0.

Let S be the Hochschild coboundary operator for AF*. We can amalgamate the

complexes (2.2), into a double complex, whose y'th column is

0 -* A°L* 0AJ'i* -^U ... _^ A*L* ® A/4* -* .

We assume a is normalized so that it is (-l)id on A. Then the operator d in

(2.2), maps (A'L*)a ® AjA* into (AF*)a+1 ® AJ+XA*, where the subscript indi-

cates the eigenspace of A F* with eigenvalue a. Therefore, the double complex we

(2) In [b] Rozenfel'd has announced complete results for (III)„ and (VI)2n. However it is not clear

as he claims that the methods of proof in [2] extend in (VI)2„. In [a] Gel'fand et al. show that (V)2

has nontrivial cohomology in dimensions 7 and 10.

(3) If dim L=oowe assume L is topologized and V* = L. See, for example, [3].
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have just described breaks up into a countable number of subcomplexes. The ath

such complex is described in Figure 1.

î Î
0^(A+1L*)a^(A+1F*)a+1 ®/l*

0->(AL*)a    ^(AF*)a

0 -* (A"1 L*)a-* (A"1 L*)a+X ®A*^..

î

(   A+XL*   \

\S+N+XL*/a

î

(   XL*   )

( ti-''V )
\S+A-xL*/a

AmA* ̂ >0

AmA*-*0

AmA* _>o

Figure 1

As we have already observed, the rows of Figure 1 are exact. We claim that

the columns are exact except for the extreme right-hand column and the column

indexed by a + j = 0. In fact, the standard identity: (ada)u = ô(a Jw) + aJ du

implies that the only eigenspace of AL* with nontrivial cohomology is the zero

eigenspace.

Let us consider Figure 1 with a = 0. All the rows are exact, and all the columns

are exact except for the extreme right-hand, column. Therefore, we get an

isomorphism between the cohomology of the first column in position i (which is

just H'(L,k)) and the cohomology of the last column in position ;' - m. If / < m

this cohomology is zero. (It is zero in dimension zero since the complex in

question is a relative complex.) Thus H'(L, fe) = 0 for i < m, proving our

theorem.

As corollaries we get:

Corollary 1. The cohomology of the algebra (I)„ is zero in dimensions 0 < /' < n.

Proof. Just take A to be the subalgebra consisting of the constant vector fields,

2 c¡(d/dx¡), c, E fe, and take a = 2f=i x¡(d/dx¡).

Corollary  2.   The  cohomology  of the algebra  (IV)2n   is zero  in  dimensions

0 < /' < n.
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Proof. Take A to be the subalgebra consisting of all linear forms 2?-i ctxi,

c¡ E fe, and take a = 2 x¡y¡.

Corollary 3. FAe cohomology of the algebra (VH)2n+1 is zero in dimensions

0 < /' < «.

Proof. Take A and a to be the same as in the preceding example.

3. To apply Theorem 1 to example (II)„ we will show that the dual algebra is free

over S(A) where A is the subalgebra spanned by 3/3x,, /' = 1,..., « — 1. It is not

hard to prove this directly, but we prefer to deduce it from a result which is

applicable to other examples besides those discussed here.

We begin with a standard theorem in commutative algebra.

Theorem. Let M be a graded module over the polynomial ring k[xx,.. .,x„]. Then

the following are equivalent.

(a) FAe Koszul cohomology of M with respect to xx,..., xn is zero except in

dimension zero.

(b) M is free as a module over k[xx,... ,xH].

(c) For eachj, 0 < / < «, x¡ is a nonzero divisor of M/(xx,... ,Xj_x)M.

See [1, Chapter VIII, Theorem 6.1] and [6, Chapter IV, Proposition 3].

Using the equivalence of (a) and (b) one can prove some general results

relating the vanishing of the cohomology of a Lie algebra, L, to the vanishing of

its Koszul cohomology with respect to an abelian subalgebra A. The Koszul

cohomology is in turn closely related to the Spencer cohomology of F. (See, for

example, [4].)

To show that the cohomology of example (II)„ vanishes in dimensions

0 < / < « we will use the equivalence of (b) and (c).

Condition (c) dualizes to the following condition:

For each j, let Lj = ( /, div / = 3/ /dxx = ■ = 3/ /3x,_i = 0}; then the map

Lj —> Lj, f —» 3/ /dXj, is surjective. To check this condition we note first of all

that Lj is just all divergence free vector fields in the variables Xj,..., xn; so it is

enough to check the condition for/ = 1. Given / G F, we can find a g such that

(d/dxx)g = f. Since div / = 0, (3/3x,)div g = 0; so div g is a power series in

x2,..., x„. Let g, be a power series vector field in x2,..., xn such that

div gx = div g, then (d/dxx)(g - gx) = f and div(g - g,) = 0. We have, there-

fore, proved

Proposition 1. // F is the Lie algebra (II)„ zAe« L* is free over S(A) where A is

the subalgebra spanned by 3/3x,, /' = 1,..., « — 1.

If a = (2?=i' x¡(d/dx¡)) — (n — l)xn(d/dxn), the hypotheses of Theorem 1 are

satisfied so we have:

Corollary. FAe cohomology of the algebra (II)„ is zero in dimensions 0 < / < «.
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Remark. One can show that the nth cohomology group of (II)„ is one-

dimensional with the volume form, dxx A • • • A dxn, as its generator. See [7].

4. We will finally compute the cohomology of the algebras (III),,, (V)2n and

(VI)2„. We begin by describing a spectral sequence due to Hochschild and Serre:

Let F be a Lie algebra over fe and M an ideal in F. The Hochschild-Serre spectral

sequence has as its Ex term H (L, II) and has EJ2' equal to H'(L/M, H'(M)). (See

for example [1, Chapter XVI, §6]).

If L is the Poisson algebra and M is its one-dimensional center, then

H'(M) = fe when / = 0, 1 and zero otherwise; so E{° = E{x = HJ(L/M,k), and

the other terms are zero. Since HJ(L,k) = 0 in dimensions 0 <y < n the only

way these F2 terms can cancel out i& for d2 : EJ2X -» F2+2° to be bijective for

7 + 2 < n. So we have proved

Proposition 2. The cohomology of the Hamiltonian algebra (V)2„ is equal to fe in

all even dimensions in the range 0 < /' < n and equal to zero in all odd dimensions

in this range.

Remark. The Poisson algebra is a nontrivial central extension of the Hamilton-

ian algebra, so it defines an element in 772 of the Hamiltonian algebra. (See, for

example, [5].) It is not hard to see that the f'th power of this 2-dimensional

element is a basis for the cohomology in dimension 2/ when 2/ < n.

Next we apply the Hochschild-Serre spectral sequence to the Hamiltonian

algebra and to its derivation algebra. Let M be the Hamiltonian algebra and L

its derivation algebra. It is easy to see that the two-dimensional generator of

H(M) is not invariant with respect to L/M, so H'(L/M,H'(M)) is zero except

whenj = 0; and H'(L/M, 77°) is equal to fe for ; = 0, 1 and zero otherwise, since

L/A7 is one-dimensional. We conclude with

Proposition 3. The cohomology of the algebra (Vl)2n is equal to fe in dimensions

zero and one and is zero in the range 1 < / < n.

A simpler computation of the same kind shows

Proposition 4. The cohomology of the algebra (III)„ is equal to fe in dimensions

zero and one, and is zero in the range 1 < ; < n.

Remark. The generator of the first cohomology group of (III),, is the one

cocycle / —> div /. The restriction of this is the generator of the first cohomology

group of (VI)2„.

To conclude, we note that Gel'fand and Fuks have proved the cohomology of

(I)„ vanishes in the range 0 < / < 2n. See [2]. The second author, in his thesis,

has proved that the cohomology of (IV)2/I also vanishes in this range. (The proofs

require rather complicated techniques from classical invariant theory.)
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