On unaveraged convergence of positive operators in Lebesgue space
HTML articles powered by AMS MathViewer
- by H. Fong and L. Sucheston
- Trans. Amer. Math. Soc. 179 (1973), 383-397
- DOI: https://doi.org/10.1090/S0002-9947-1973-0329009-1
- PDF | Request permission
Abstract:
Let T be a power-bounded positive conservative operator on ${L_1}$ of a $\sigma$-finite measure space. Let e be a bounded positive function invariant under the operator adjoint to T. Theorem. (1) $\smallint |{T^n}f| \cdot \;e \to 0$ implies (2) $\smallint |{T^n}f| \to 0$. If T and all its powers are ergodic, and T satisfies an abstract Harris condition, then(l) holds by the Jamison-Orey theorem for all integrable f with $\smallint f \cdot e = 0$, and hence also (2) holds for such f. A new proof of the Jamison-Orey theorem is given, via the ’filling scheme’. For discrete measure spaces this is due to Donald Ornstein, Proc. Amer. Math. Soc. 22 (1969), 549-551. If T is power-bounded, conservative and ergodic, and $0 < {f_0} = T{f_0}$, then ${f_0}\; \cdot \;e \in {L_1}$ implies ${f_0} \in {L_1}$, hence (2) implies that ${T^n}f$ converges for each $f \in {L_1}$. Theorem. Let T be a positive conservative contraction on ${L_1}$; then the class of functions $\{ f - Tf,f \in L_1^ + \}$ is dense in the class of functions $\{ f - Tf,f \in {L_1}\}$.References
- R. V. Chacon, Resolution of positive operators, Bull. Amer. Math. Soc. 68 (1962), 572–574. MR 141989, DOI 10.1090/S0002-9904-1962-10852-0
- Shaul R. Foguel, The ergodic theory of Markov processes, Van Nostrand Mathematical Studies, No. 21, Van Nostrand Reinhold Co., New York-Toronto-London, 1969. MR 0261686
- Humphrey Fong, On invariant functions for positive operators, Colloq. Math. 22 (1970), 75–84. (errata insert). MR 273387, DOI 10.4064/cm-22-1-75-84
- N. C. Jain, A note on invariant measures, Ann. Math. Statist. 37 (1966), 729–732. MR 196806, DOI 10.1214/aoms/1177699470
- Benton Jamison and Steven Orey, Markov chains recurrent in the sense of Harris, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8 (1967), 41–48. MR 215370, DOI 10.1007/BF00533943 P. A. Meyer, Travaux de H. Rost en théorie du potentiel, Université de Strasbourg, Séminaire de Probabilités 1969/70.
- Steven Orey, Lecture notes on limit theorems for Markov chain transition probabilities, Van Nostrand Reinhold Mathematical Studies, No. 34, Van Nostrand Reinhold Co., London-New York-Toronto, 1971. MR 0324774
- Steven Orey, An ergodic theorem for Markov chains, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1 (1962), 174–176. MR 145587, DOI 10.1007/BF01844420
- Donald Ornstein, On a theorem of Orey, Proc. Amer. Math. Soc. 22 (1969), 549–551. MR 245076, DOI 10.1090/S0002-9939-1969-0245076-2
- Donald S. Ornstein and Louis Sucheston, On the existence of a $\sigma$-finite invariant measure under a generalized Harris condition, Contributions to Ergodic Theory and Probability (Proc. Conf., Ohio State Univ., Columbus, Ohio, 1970) Springer, Berlin, 1970, pp. 219–233. MR 0280680
- Donald Ornstein and Louis Sucheston, An operator theorem on $L_{1}$ convergence to zero with applications to Markov kernels, Ann. Math. Statist. 41 (1970), 1631–1639. MR 272057, DOI 10.1214/aoms/1177696806
- Hermann Rost, Markoff-Ketten bei sich füllenden Löchern im Zustandsraum, Ann. Inst. Fourier (Grenoble) 21 (1971), no. 1, 253–270 (German, with English and French summaries). MR 299755, DOI 10.5802/aif.366
- Louis Sucheston, On the ergodic theorem for positive operators. I, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8 (1967), 1–11. MR 213510, DOI 10.1007/BF00533940
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 179 (1973), 383-397
- MSC: Primary 60F15; Secondary 28A65
- DOI: https://doi.org/10.1090/S0002-9947-1973-0329009-1
- MathSciNet review: 0329009