The $L^p$ norm of sums of translates of a function
HTML articles powered by AMS MathViewer
- by Kanter Marek
- Trans. Amer. Math. Soc. 179 (1973), 35-47
- DOI: https://doi.org/10.1090/S0002-9947-1973-0361617-4
- PDF | Request permission
Abstract:
For p not an even integer, $p > 0$, we prove that knowledge of the ${L^p}$ norm of all linear combinations of translates of a real valued function in ${L^p}(R)$ determines the function up to translation and multiplication by $\pm 1$.References
- Salomon Bochner, Harmonic analysis and the theory of probability, University of California Press, Berkeley-Los Angeles, Calif., 1955. MR 0072370, DOI 10.1525/9780520345294
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896
- Kiyosi Itô, The canonical modification of stochastic processes, J. Math. Soc. Japan 20 (1968), 130–150. MR 226719, DOI 10.2969/jmsj/02010130
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751 P. Levy, Théorie de l’addition des variables aléatoires, Gauthier-Villars, Paris, 1954.
- Michael Schilder, Some structure theorems for the symmetric stable laws, Ann. Math. Statist. 41 (1970), 412–421. MR 254915, DOI 10.1214/aoms/1177697080
- Edwin Hewitt and Karl Stromberg, Real and abstract analysis, Graduate Texts in Mathematics, No. 25, Springer-Verlag, New York-Heidelberg, 1975. A modern treatment of the theory of functions of a real variable; Third printing. MR 0367121
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 179 (1973), 35-47
- MSC: Primary 43A15
- DOI: https://doi.org/10.1090/S0002-9947-1973-0361617-4
- MathSciNet review: 0361617