Higher derivations and field extensions
HTML articles powered by AMS MathViewer
- by R. L. Davis
- Trans. Amer. Math. Soc. 180 (1973), 47-52
- DOI: https://doi.org/10.1090/S0002-9947-1973-0318115-3
- PDF | Request permission
Abstract:
Let $K$ be a field having prime characteristic $p$. The following conditions on a subfield $k$ of $K$ are equivalent: (i) ${ \cap _n}{K^{{p^n}}}(k) = k$ and $K/k$ is separable. (ii) $k$ is the field of constants of an infinite higher derivation defined in $K$. (iii) $k$ is the field of constants of a set of infinite higher derivations defined in $K$. If $K/k$ is separably generated and $k$ is algebraically closed in $K$, then $k$ is the field of constants of an infinite higher derivation in $K$. If $K/k$ is finitely generated then $k$ is the field of constants of an infinite higher derivation in $K$ if and only if $K/k$ is regular.References
- R. Baer, Algebraische Theorie der differentierbaren Runktionenkorper. I, S.-B. Heidelberg. Akad. 1927, 15-32.
- Nickolas Heerema, Derivations and embeddings of a field in its power series ring. II, Michigan Math. J. 8 (1961), 129–134. MR 136601
- Nathan Jacobson, Lectures in abstract algebra. Vol III: Theory of fields and Galois theory, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London-New York, 1964. MR 0172871, DOI 10.1007/978-1-4612-9872-4
- Serge Lang, Introduction to algebraic geometry, Interscience Publishers, Inc., New York-London, 1958. MR 0100591
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Moss Eisenberg Sweedler, Structure of inseparable extensions, Ann. of Math. (2) 87 (1968), 401–410. MR 223343, DOI 10.2307/1970711
- Morris Weisfeld, Purely inseparable extensions and higher derivations, Trans. Amer. Math. Soc. 116 (1965), 435–449. MR 191895, DOI 10.1090/S0002-9947-1965-0191895-1
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 180 (1973), 47-52
- MSC: Primary 12F15
- DOI: https://doi.org/10.1090/S0002-9947-1973-0318115-3
- MathSciNet review: 0318115