Dual spaces of groups with precompact conjugacy classes
HTML articles powered by AMS MathViewer
- by John R. Liukkonen
- Trans. Amer. Math. Soc. 180 (1973), 85-108
- DOI: https://doi.org/10.1090/S0002-9947-1973-0318390-5
- PDF | Request permission
Abstract:
We show that a second countable locally compact type I group with a compact invariant neighborhood of the identity is CCR, and has a Hausdorff dual if and only if its conjugacy classes are precompact. We obtain sharper results if the group is almost connected or has a fundamental system of invariant neighborhoods of the identity. Along the way we show that for a locally compact abelian group $A$ and a group $B$ of topological group automorphisms of $A, A$ has small $B$ invariant neighborhoods at 1 if and only if $\hat A$ has precompact orbits under the dual actions of $B$.References
- Louis Auslander and Calvin C. Moore, Unitary representations of solvable Lie groups, Mem. Amer. Math. Soc. 62 (1966), 199. MR 207910
- Larry Baggett, A separable group having a discrete dual space is compact, J. Functional Analysis 10 (1972), 131–148. MR 0346090, DOI 10.1016/0022-1236(72)90045-6
- Robert J. Blattner, Positive definite measures, Proc. Amer. Math. Soc. 14 (1963), 423–428. MR 147580, DOI 10.1090/S0002-9939-1963-0147580-9
- Jean Braconnier, Sur les groupes topologiques localement compacts, J. Math. Pures Appl. (9) 27 (1948), 1–85 (French). MR 25473
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964 (French). MR 0171173
- J. M. G. Fell, The dual spaces of $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 94 (1960), 365–403. MR 146681, DOI 10.1090/S0002-9947-1960-0146681-0
- J. M. G. Fell, Weak containment and induced representations of groups, Canadian J. Math. 14 (1962), 237–268. MR 150241, DOI 10.4153/CJM-1962-016-6
- James Glimm, Locally compact transformation groups, Trans. Amer. Math. Soc. 101 (1961), 124–138. MR 136681, DOI 10.1090/S0002-9947-1961-0136681-X V. M. Gluškov, The structure of locally compact groups and Hilbert’s fifth problem, Uspehi Mat. Nauk 12 (1957), no. 2 (74), 3-41; English transl., Amer. Math. Soc. Transl. (2) 15 (1960), 55-93. MR 21 #698; MR 22 #5690.
- Siegfried Grosser and Martin Moskowitz, On central topological groups, Trans. Amer. Math. Soc. 127 (1967), 317–340. MR 209394, DOI 10.1090/S0002-9947-1967-0209394-9
- Siegfried Grosser and Martin Moskowitz, Representation theory of central topological groups, Trans. Amer. Math. Soc. 129 (1967), 361–390. MR 229753, DOI 10.1090/S0002-9947-1967-0229753-8
- Siegfried Grosser and Martin Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math. 246 (1971), 1–40. MR 284541, DOI 10.1515/crll.1971.246.1
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496, DOI 10.1007/978-1-4419-8638-2
- Eberhard Kaniuth, Die Struktur der regulären Darstellung lokalkompakter Gruppen mit invarianter Umgebungsbasis der Eins, Math. Ann. 194 (1971), 225–248 (German). MR 293001, DOI 10.1007/BF01350052
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- Adam Kleppner, Multipliers on abelian groups, Math. Ann. 158 (1965), 11–34. MR 174656, DOI 10.1007/BF01370393
- George W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101–139. MR 44536, DOI 10.2307/1969423 —, The theory of group representations, Lecture Notes (Summer, 1955), 3 vols., University of Chicago, Dept. of Math., Chicago, Ill., 1955. MR 19, 117.
- George W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265–311. MR 98328, DOI 10.1007/BF02392428
- Calvin C. Moore, Groups with finite dimensional irreducible representations, Trans. Amer. Math. Soc. 166 (1972), 401–410. MR 302817, DOI 10.1090/S0002-9947-1972-0302817-8
- Richard D. Mosak, The $L^{1}$- and $C^{\ast }$-algebras of $[FIA]^{-}_{B}$ groups, and their representations, Trans. Amer. Math. Soc. 163 (1972), 277–310. MR 293016, DOI 10.1090/S0002-9947-1972-0293016-7 M. A. Naĭmark, Normed rings, GITTL, Moscow, 1956; English transl., rev. ed., Noordhoff, Groningen, 1964. MR 19, 870; MR 34 #4928.
- B. H. Neumann, Groups with finite classes of conjugate elements, Proc. London Math. Soc. (3) 1 (1951), 178–187. MR 43779, DOI 10.1112/plms/s3-1.1.178
- Robert R. Phelps, Lectures on Choquet’s theorem, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0193470
- Lewis C. Robertson, A note on the structure of Moore groups, Bull. Amer. Math. Soc. 75 (1969), 594–599. MR 245721, DOI 10.1090/S0002-9904-1969-12252-4
- I. Schochetman, Topology and the duals of certain locally compact groups, Trans. Amer. Math. Soc. 150 (1970), 477–489. MR 265513, DOI 10.1090/S0002-9947-1970-0265513-X
- Elmar Thoma, Über unitäre Darstellungen abzählbarer, diskreter Gruppen, Math. Ann. 153 (1964), 111–138 (German). MR 160118, DOI 10.1007/BF01361180
- J. Tits, Automorphismes à déplacement borné des groupes de Lie, Topology 3 (1964), no. suppl, suppl. 1, 97–107 (French). MR 158948, DOI 10.1016/0040-9383(64)90007-2 D. M. Lee and T. S. Wu, On existence of compact open normal subgroups of $0$-dimensional groups, Proc. Amer. Math. Soc. 26 (1970), 265-528.
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 180 (1973), 85-108
- MSC: Primary 22D05
- DOI: https://doi.org/10.1090/S0002-9947-1973-0318390-5
- MathSciNet review: 0318390