ON THE ARENS PRODUCTS AND CERTAIN BANACH ALGEBRAS

BY

PAK-KEN WONG

ABSTRACT. In this paper, we study several problems in Banach algebras concerned with the Arens products.

1. Introduction. Let A be a Banach algebra, A^{**} its second conjugate space and π_A the canonical embedding of A into A^{**}. Arens has defined two natural extensions of the product on A to A^{**}. Under either Arens product, A^{**} becomes a Banach algebra. In §3, we show that if A is a semisimple Banach algebra which is a dense two-sided ideal of a semisimple annihilator Banach algebra B, then $\pi_A(A)$ is a two-sided ideal of A^{**} (with the Arens product). In particular, a semisimple annihilator Banach algebra has such property. This result greatly generalizes some recent results obtained by the author (see [12, p. 82] and [13, p. 830]).

In §4, we study the radical R^{**} of A^{**}, where A is a semisimple annihilator Banach algebra. We show that, under either Arens product, R^{**} remains the same and it is the right annihilator of A^{**}. A similar result was obtained by Civin and Yood [5] for the group algebra of a compact abelian group.

§5 is devoted to the study of semisimple dual Banach algebras which are two-sided ideals of a B^*-algebra. Let A be a semisimple dual Banach algebra which is a dense subalgebra of a B^*-algebra B such that $\|\cdot\|$ majorizes $\|\cdot\|_1$ on A. We show that A is a two-sided ideal of B if and only if, for any orthogonal family of hermitian minimal idempotents $\{e_\lambda : \lambda \in \Lambda\}$ of B and $x \in A$, $\sum e_\lambda x$ and $\sum e_\lambda x \pi_A$ are summable in the norm of A. This result was proved by Ogasawara and Yoshinaga [9] for weakly complete commutative dual A^*-algebras. Finally, by using the above result as well as the result in §4, we answer a question of the author affirmatively: if A is a semisimple dual Banach algebra which is a dense two-sided ideal of a B^*-algebra, then A is Arens regular and A^{**}/R^{**} is a semisimple Banach algebra which is a dense two-sided ideal of some B^*-algebra.
2. Notation and preliminaries. Definitions not explicitly given are taken from Rickart's book [10].

Let \(A \) be a Banach algebra. For each element \(a \in A \), let \(\text{Sp}_A(a) \) denote the spectrum of \(a \) in \(A \). If \(A \) is commutative, \(M_A \) will denote the carrier space of \(A \) and \(C_0(M_A) \) the algebra of all complex-valued functions on \(M_A \), which vanishes at infinity. If \(A \) is a commutative \(B^* \)-algebra, then \(\hat{A} = C_0(M_A) \).

Let \(A \) be a Banach algebra which is a subalgebra of a Banach algebra \(B \). For each subset \(E \) of \(A \), \(\text{cl}(E) \) (resp. \(\text{cl}_A(E) \)) will denote the closure of \(E \) in \(B \) (resp. \(A \)). We write \(\| - \| \) for the norm on \(A \) and \(| - | \) for the norm on \(B \).

For any set \(E \) in a Banach algebra \(A \), let \(\ell_A(E) \) and \(\ell_A(E) \) denote the left and right annihilators of \(E \) respectively. A Banach algebra \(A \) is called an annihilator algebra if \(\ell_A(A) = \ell_A(A) = \{0\} \) and if for every proper closed right ideal \(I \) and every proper closed left ideal \(J \), \(\ell_A(I) \neq \{0\} \) and \(\ell_A(J) \neq \{0\} \). If, in addition, \(\ell_A(I) = I \) and \(\ell_A(J) = J \), then \(A \) is called a dual algebra.

An idempotent \(e \) in a Banach algebra \(A \) is said to be minimal if \(eAe \) is a division algebra. In case \(A \) is semisimple, this is equivalent to saying that \(Ae (eA) \) is a minimal left (right) ideal of \(A \).

In this paper, all algebras and linear spaces under consideration are over the field \(C \) of complex numbers.

3. The Arens products and annihilator algebras. Let \(A \) be a Banach algebra, \(A^* \) and \(A^{**} \) the conjugate and second conjugate spaces of \(A \), respectively. The two Arens products on \(A^{**} \) are defined in stages according to the following rules (see [1]). Let \(x, y \in A, f \in A^*, F, G \in A^{**} \).

(a) Define \(f \circ x \) by \((f \circ x)(y) = f(xy) \). Then \(f \circ x \in A^* \).
(b) Define \(G \circ f \) by \((G \circ f)(x) = G(f \circ x) \). Then \(G \circ f \in A^* \).
(c) Define \(F \circ G \) by \((F \circ G)(f) = F(G \circ f) \). Then \(F \circ G \in A^{**} \).

\(A^{**} \) with the Arens product \(\circ \) denoted by \((A^{**}, \circ) \).

(a') Define \(x \circ' f \) by \((x \circ' f)(y) = f(yx) \). Then \(x \circ' f \in A^* \).
(b') Define \(f \circ' F \) by \((f \circ' F)(x) = F(x \circ' f) \). Then \(f \circ' F \in A^* \).
(c') Define \(F \circ' G \) by \((F \circ' G)(f) = G(f \circ' F) \). Then \(F \circ' G \in A^{**} \).

\(A^{**} \) with the Arens product \(\circ' \) denoted by \((A^{**}, \circ') \).

Each of these products extends the original multiplication on \(A \) when \(A \) is canonically embedded in \(A^{**} \). In general, \(\circ \) and \(\circ' \) are distinct on \(A^{**} \). If they coincide on \(A^{**} \), then \(A \) is called Arens regular.

Notation. Let \(A \) be a Banach algebra. The mapping \(\pi_A \) will denote the canonical embedding of \(A \) into \(A^{**} \).

The left multiplication in \((A^{**}, \circ) \) is weakly continuous and the right multiplication in \((A^{**}, \circ') \) is weakly continuous (see [1, p. 842]). If \(x \in A \) and \(F \in A^{**} \), then \(\pi_A(x) \circ F = \pi_A(x) \circ' F \) and \(F \circ \pi_A(x) = F \circ' \pi_A(x) \) (see [1, p. 843]).
The following result is useful throughout the paper.

Theorem 3.1. Let A be a semisimple Banach algebra which is a dense two-sided ideal of a semisimple annihilator Banach algebra B. Then $\pi_A(A)$ is a two-sided ideal of (A^{**}, \circ). In particular, $\pi_B(B)$ is a two-sided ideal of B^{**} (with the Arens product).

Proof. By [2, p. 3, Proposition 2.2], there exists a constant $k > 0$ such that $k\|a\| \geq |a|$ on A and hence by [2, p. 3, Theorem 2.3], there exists a constant M such that

$$
\|ab\| \leq M\|a\| \|b\| \quad \text{and} \quad \|ba\| \leq M\|a\| \|b\|
$$

for all $a \in A$, $b \in B$. Let e be a minimal idempotent of B. Since $eAe = eBe = Ce$, it follows that $e \in A$. Also if e is a minimal idempotent of A, then e is a minimal idempotent of B. Therefore A and B have the same minimal idempotents. Let e be a minimal idempotent. Since $Ae = Be$, it is easy to see that the norms $\|\cdot\|$ and $|\cdot|$ are equivalent on Ae. Since B is an annihilator algebra, it follows immediately from [10, p. 101, Lemma (2.8.20)] and [10, p. 104, Theorem (2.8.23)] that Be is a reflexive Banach space and hence Ae is also reflexive. Let $F \in A^{**}$. We show that $F \circ \pi_A(e) \in \pi_A(A)$. Clearly we can assume that $\|F\| = 1$.

Then by Goldstine’s theorem [6, p. 424, Theorem 5] there exists a net $\{x_\alpha\}$ in A such that $\|x_\alpha\| \leq 1$ for all α and $\pi_A(x_\alpha) \to F$ weakly in A^{**}. Hence it follows from the weak continuity of left multiplication that $\pi_A(x_\alpha e) \to F \circ \pi_A(e)$ weakly. Since $\|x_\alpha e\| \leq \|e\|$, by [6, p. 425, Theorem 7] we can assume that there exists some $y \in Ae$ such that $g(x_\alpha e) \to g(y)$ for all $g \in (Ae)^*$. Now for each $f \in A^*$, let f^\prime be the restriction of f to Ae. Then we have

$$
\pi_A(y)(f) = \lim_{\alpha} f^\prime(x_\alpha e) = \lim_{\alpha} \pi_A(x_\alpha e)(f) = (F \circ \pi_A(e))(f).
$$

Therefore, we get

$$
F \circ \pi_A(e) = \pi_A(y) \in \pi_A(A).
$$

Let $x \in A$. Since the socle S of B is dense in B by [10, p. 100, Corollary (2.8.16)], we can write $x = \lim_{n \to \infty} x_n$, where $x_n \in S$ $(n = 1, 2, \ldots)$. Since S is also the socle of A, it follows easily from (2) that

$$
F \circ \pi_A(x_n) \in \pi_A(A) \quad (n = 1, 2, \ldots).
$$

Let $f \in A^{**}$. By (1) we obtain $\|a \circ' f\| \leq M||f|| |a|$ for all $a \in A$ and consequently

$$
|(F \circ \pi_A(x_n) - F \circ \pi(x))(f)| = |F((x_n - x) \circ' f)| \leq M||F|| ||f|| |x_n - x|.
$$
Since \(x \to x \) in \(|\cdot| \), we have \(F \circ \pi_A(x) = F \circ \pi_A(x) \) in \(\|\cdot\| \). Hence it follows from (3) that \(F \circ \pi_A(x) \in \pi_A(A) \). Similarly we can show that \(\pi_A(x) \circ F \in \pi_A(A) \). Therefore \(\pi_A(A) \) is a two-sided ideal of \((A^{**}, \circ)\) and this completes the proof.

Remark. The preceding result generalizes a part of [13, p. 830, Theorem 5.2] as well as [12, p. 82, Theorem 3.3].

Corollary 3.2. Let \(A \) be as in Theorem 3.1. Then for every minimal idempotent \(e \in A \), \(A^{**} \circ \pi_A(e) \) and \(\pi_A(e) \circ A^{**} \) are minimal left and right ideals of \((A^{**}, \circ)\).

Proof. This follows immediately from Theorem 3.1 since \(A^{**} \circ \pi_A(e) = \pi_A(Ae) \) and \(\pi_A(e) \circ A^{**} = \pi_A(eA) \).

4. The radical of the algebra \((A^{**}, \circ)\). This section is devoted to the discussion of the radical of the algebra \((A^{**}, \circ)\). The main result in this section is useful in \(\S 5 \). Civi and Yood [5] had studied this problem for the group algebra of an infinite locally compact abelian group.

Throughout this section, unless otherwise stated, \(A \) will be a semisimple annihilator Banach algebra. Let \(R_1^{**} \) (resp. \(R_2^{**} \)) denote the radical of \((A^{**}, \circ)\) (resp. \((A^{**}, \circ')\)); \(R_1^{**} \) and \(R_2^{**} \) may not be zero (see [5, p. 857, Theorem 3.14] and [13, p. 831, Theorem 5.5]). By Theorem 3.1, \(\pi_A(A) \) is a two-sided ideal of \((A^{**}, \circ)\).

Theorem 4.1. Let \(A \) be a semisimple annihilator Banach algebra. Then the following statements hold:

(i) \(R_1^{**} \) is weakly closed.
(ii) \(R_1^{**} = \{ F \in A^{**} : A^{**} \circ F = (0) \} = \{ F \in A^{**} : F \circ' A^{**} = (0) \} \).
(iii) \(R_1^{**} \) coincides with \(R_2^{**} \).

Proof. Let \(E_A \) be the set of all minimal idempotents of \(A \). For each \(e \in E_A \), let \(M = (1 - \pi_A(e)) \circ A^{**} \). We show that \(M \) is a maximal modular right ideal of \((A^{**}, \circ)\). In fact, suppose there exists a right ideal \(M' \) of \((A^{**}, \circ)\) properly containing \(M \). Let \(F \in M' \) be such that \(F \notin M \). Then \(\pi_A(e) \circ F = F - (1 - \pi_A(e)) \circ F \in M' \) and \(\pi_A(e) \circ F \neq (0) \). Hence \((\pi_A(e) \circ A^{**}) \cap M' \neq (0) \) and consequently by Corollary 3.2 \(M' \supseteq \pi_A(e) \circ A^{**} \). Hence \(M' = A^{**} \). Therefore \(M \) is maximal.

Let \(\{ G_a \} \) be a net in \(M \) such that \(G_a \to G \) weakly for some \(G \in A^{**} \). Since \(\pi_A(e) \circ G_a = 0 \) for each \(a \), it follows that \(\pi_A(e) \circ G = 0 \) and hence \(G \in M \). Therefore \(M \) is weakly closed. Let \(R = \bigcap \{ (1 - \pi_A(e)) \circ A^{**} : e \in E_A \} \) and \(T = \{ F \in A^{**} : A^{**} \circ F = (0) \} \).

Then \(R \) is weakly closed and \(T \subseteq R_1^{**} \subseteq R \). Let \(F \in R \). Then \(\pi_A(e) \circ F = 0 \) for all \(e \in E_A \). Since the socle of \(A \) is dense in \(A \), we have \(\pi_A(A) \circ F = (0) \). Since
\(\pi_A(A)\) is weakly dense in \((A^{**}, \circ)\), it follows that \(A^{**} \circ F = (0)\) and so \(F \in T\). Consequently \(R_1^{**} = R = T\). Similarly by using maximal modular left ideals, we can show that \(R_2^{**} = \{F \in A^{**}: F \circ' A^{**} = (0)\}\). Let \(F \in R_1^{**}, G \in A^{**}\) and \(x_a \in A\) such that \(\pi_A(x_a) \rightarrow G\) weakly. Then \(F \circ \pi_A(x_a) = F \circ' \pi_A(x_a) \rightarrow F \circ' G\) weakly. Since by Theorem 3.1 \(F \circ \pi_A(x_a) \in R_1^{**} \cap \pi_A(A) = (0)\), we have \(F \circ' G = 0\) and so \(F \in R_2^{**}\). Hence \(R_1^{**} \subset R_2^{**}\). Similarly we can show that \(R_2^{**} \subset R_1^{**}\). Therefore they are equal and this completes the proof of the theorem.

Remark 1. Theorem 4.1 (ii) is a generalization of [5, p. 857, Theorem 3.15 (i)].

Remark 2. In general, \(R_1^{**} \neq \{F \in A^{**}: F \circ A^{**} = (0)\}\). In fact, let \(A\) be the group algebra of an infinite compact abelian group. Then by [5, p. 857, Theorem 3.12] \(R_1^{**} \neq (0)\). By [5, p. 855, Lemma 3.8], \(A^{**}\) has a right identity. Hence it follows that \(\{F \in A^{**}: F \circ A^{**} = (0)\} = (0) \neq R_1^{**}\).

Notation. In the rest of this paper, let \(R^{**} = R_1^{**} = R_2^{**}\).

Corollary 4.2. Suppose \(A\) is a semisimple commutative annihilator Banach algebra and \(M_A\) its carrier space. Let \(Q\) be the closed subspace of \(A^*\) spanned by \(M_A\) and let \(Q^\perp = \{F \in A^{**}: F(Q) = (0)\}\). Then \(Q^\perp = R^{**}\).

Proof. It is well known that \(M_A\) is discrete. For each \(b \in M_A\), let \(e_b\) be the minimal idempotent of \(A\) corresponding to the characteristic function of \(b\) ([10, p. 168, Theorem (3.6.3)]). For each \(b \in M_A\) and \(x \in A\), we have \(xe_b = e_bxe_b = b(x)e_b\). Therefore \((f \circ e_b)(x) = f(e_b)b(x)\) for all \(f \in A^*\). Hence \(f \circ e_b = f(e_b)b\).

Let \(F \in A^{**}\). Then \((\pi_A(e_b) \circ F)(f) = F(f \circ e_b) = f(e_b)F(b)\) for all \(f \in A^*\). Hence it follows easily that \(Q^\perp = \{F \in A^{**}: A^{**} \circ F = (0)\}\). Therefore by Theorem 4.1, \(Q^\perp = R^{**}\).

Remark. The above result is a generalization of [5, p. 857, Theorem 3.15 (ii)].

Corollary 4.3. Let \(M\) be a maximal modular right ideal of \((A^{**}, \circ)\). Then either \((l(M))^2 = (0)\) or there exists a minimal idempotent \(e\) of \(A\) such that \(M = (1 - \pi_A(e)) \circ A^{**}\). In the latter case, \(M\) is weakly closed. A similar result holds for left ideals.

Proof. If \(l(M) \subset R^{**}\), then by Theorem 4.1 \((l(M))^2 = (0)\). Suppose \(l(M) \not\subset R^{**}\). We claim that \(l(M) \cap \pi_A(A) \neq (0)\). Assume this is not so. Then \(\pi_A(A) \circ l(M) \subset \pi_A(A) \cap l(M) = (0)\). Hence \(A^{**} \circ l(M) = (0)\) and so by Theorem 4.1, \(l(M) \subset R^{**}\). This contradiction shows that \(l(M) \cap \pi_A(A) \neq (0)\). Therefore by [10, p. 98, Lemma (2.8.6)], \(l(M) \cap \pi_A(A)\) contains a minimal idempotent \(\pi_A(e)\) of \(\pi_A(A)\). By the maximality of \(M\), we have \(M = (1 - \pi_A(e)) \circ A^{**}\). Also \(M\) is weakly closed by the proof of Theorem 4.1 and this completes the proof.
We remark that a similar result for left ideals has been obtained by Civin for the group algebra of an infinite locally compact abelian group (see [3]).

5. Banach algebras which are ideals in a B^*-algebra. In this section, we study semisimple dual Banach algebras which are two-sided ideals in a B^*-algebra. There are many examples having such properties in analysis. The algebras C_p discussed in [8] and the proper H^*-algebras are such examples. Unless otherwise stated, A will be a semisimple dual Banach algebra which is a dense subalgebra of a B^*-algebra B such that $\|\cdot\|$ majorizes $|\cdot|$ on A. It is well known that B is also a dual algebra (see [12, p. 81]).

The following result is contained in Lemma 5.1 in [7].

Lemma 5.1. A and B have the same minimal idempotents and the same socle.

Proof. Let e be a minimal idempotent of A. Then it is clear that e is a minimal idempotent of B. By the proof of [12, p. 82, Lemma 3.2] $\|\cdot\|$ and $|\cdot|$ are equivalent on Ae and $Be = Ae$, $eA = eB$. Therefore the socle S of A is a dense two-sided ideal of B. Let f be a minimal idempotent of B. Then $Sf \subseteq Bf \subseteq S$ and so $Bf \subseteq S \subseteq A$. Therefore f is a minimal idempotent of A. Now it is clear that S is also the socle of B.

We shall now give a characterization for A to be a two-sided ideal of B.

Theorem 5.2. Let A be a semisimple dual Banach algebra which is a dense subalgebra of a B^*-algebra B such that $\|\cdot\|$ majorizes $|\cdot|$ on A. Then the following statements are equivalent:

(i) A is a two-sided ideal of B.

(ii) There exists a constant $M > 0$ such that $\|\sum_{k=1}^{n} e_k x_k\| \leq M\|x\|$ and $\|\sum_{k=1}^{n} x_k e_k\| \leq M\|x\|$, where $x \in A$ and e_1, e_2, \ldots, e_n are any mutually orthogonal hermitian minimal idempotents of B.

(iii) For any orthogonal family of hermitian minimal idempotents $\{e_\lambda : \lambda \in \Lambda\}$ of B and $x \in A$, $\sum_{\lambda} x e_\lambda$ and $\sum_{\lambda} e_\lambda x$ are summable in the norm of A and especially when $\{e_\lambda : \lambda \in \Lambda\}$ is a maximal family, $x = \sum_{\lambda} x e_\lambda = \sum_{\lambda} e_\lambda x$ in A.

Proof. We know that B is a dual algebra and A and B have the same minimal idempotents and the same socle by Lemma 5.1.

(i) \Rightarrow (ii). Suppose (i) holds. Then by [2, p. 3, Theorem 2.3] there exists a constant M such that $\|\sum_{k=1}^{n} e_k x_k\| \leq M\|\sum_{k=1}^{n} e_k\| \|x\| = M\|x\|$. Similarly, $\|\sum_{k=1}^{n} x_k e_k\| \leq M\|x\|$ and this proves (ii).

(ii) \Rightarrow (iii). Suppose (ii) holds. Let $\{e_\lambda : \lambda \in \Lambda\}$ be an orthogonal family of hermitian minimal idempotents of B and $x \in A$. Let $\{E_\gamma : \gamma \in \Gamma\}$ be the direct set of all finite sums $e_{\lambda_1} + e_{\lambda_2} + \cdots + e_{\lambda_n}$ ($\lambda_k \in \Lambda$ and $n = 1, 2, \ldots$). Since $\|xE_\gamma\| < M\|x\|$ by (ii), it follows from the Alaoglu theorem that $\{\pi_A(xE_\gamma)\}$ has
weak limit points in A^{**}. Let $F \in A^{**}$ be a weak limit point of $\{\pi_A(xy)_{\gamma}\}$. Then for any $y \in A$, $\pi_A(y) \circ F$ is a weak limit point of $\pi_A(xy_{\gamma})$. Since A is a dual algebra, by Theorem 3.1 $\pi_A(y) \circ F \in \pi_A(A)$. Let $\{e_\alpha: \alpha \in \Delta\}$ be a maximal orthogonal family of hermitian minimal idempotents of B containing $\{e_\alpha: \alpha \in \Delta\}$. Then it is easy to see that $\pi_A(y) \circ F \circ \pi_A(e_\alpha) = \pi_A(ye_\alpha) (\alpha \in \Delta)$. Since $\{e_\alpha: \alpha \in \Delta\}$ is maximal, it follows that $\pi_A(y) \circ F = \pi_A(xy)$ (see [9, p. 21]). Hence $\{xy_{\gamma}\}$ converges weakly to yx and so by the Orlicz-Banach theorem [6, p. 93], $\sum_{\lambda} xe_\lambda$ is summable in the norm of A. Since A is a dual algebra by [10, p. 91, Corollary (2.8.3)] $x \in c_l(A_x)$. Hence, for any given $\epsilon > 0$, there exists some $z \in A$ such that $\|x - zx\| < \epsilon$. Now by (ii) we have $\|xy_{\gamma}\| \leq M\|x - zx\| + \|zx_{\gamma}\| < M\epsilon + \|zx_{\gamma}\|$. Since $\sum_{\lambda} xe_\lambda$ is summable in $\|\cdot\|$ and ϵ is arbitrary, it follows that $\sum_{\lambda} xe_\lambda$ is summable in $\|\cdot\|$. If $\{e_\lambda: \lambda \in \Lambda\}$ is a maximal family, then it is easy to see that $x = \sum_{\lambda} xe_\lambda$. Similarly we can show that $x = \sum_{\lambda} e_y x$ and this proves (iii).

(iii) \Rightarrow (i). Suppose (iii) holds. Let $x \in A$ and $y \in B$. We shall show that $xy \in B$. Since any element of B is a linear combination of positive elements, we may assume that y is a positive element. We also assume that $x \neq 0$ and $y \neq 0$. Let E be a maximal commutative $*-$subalgebra of B containing y. Then the carrier space M_E of E is discrete. For each $\lambda \in M_E$, let e_λ be the element of E corresponding to the characteristic function of λ. Then $\{e_\lambda: \lambda \in M_E\}$ is a maximal orthogonal family of hermitian minimal idempotents in B. Since $y \in E$ and $\text{Sp}_E(y) > 0$, we have $ye_\lambda = \beta_\lambda e_\lambda$, where $\beta_\lambda \geq 0$ for all λ and $\beta_\lambda \leq |y|$. Since B is a dual B^*-algebra, by the proof of (ii) \Rightarrow (iii) (or [9, p. 22, Corollary 1]) $xy = \sum_{\lambda} xe_\lambda$ in $\|\cdot\|$ and so there exists only a countable number of e_λ for which $xe_\lambda \neq 0$, say e_1, e_2, \cdots. For any two positive integers m, n ($m < n$), let $z^n = \sum_{k=m}^n xe_k = \sum_{k=m}^n \beta_k xe_k$. Then $z^n \in A$. We shall show that $\{\sum_{k=1}^n xe_k\}$ is a Cauchy sequence in A. Clearly, we can assume that each z^n_m is a nonzero element. Choose $f \in A^*$ such that $\|f\| = 1$ and $\|z^n_m\| = \|z^n_m\|$ by the Hahn-Banach theorem. Then $f(z^n_m) = \sum_{k=m}^n \beta_k f(xe_k)$. Write $f(xe_k) = a_k + ib_k$, where a_k, b_k are real numbers. Then we have

$$\sum_{k=m}^n \beta_k f(xe_k) = \sum_{k=1}^n \beta_k a_k = \|z^n_m\| > 0.$$

Since $\beta_k \geq 0$, there exists some $a_k > 0$. Let $\{a_k\} \subset \{a_k\}_{k=m}^n$ such that $a_k, > 0$. Then we have

$$\left\| \sum_{k=m}^n xe_k \right\| = \|z^n_m\| = \sum_{k=m}^n \beta_k a_k \leq \sum_{k'} a_k' \leq |y| \left| \sum_{k'} f(xe_k') \right| \leq |y| \|f\| \left\| \sum_{k'} xe_k' \right\| = |y| \left\| \sum_{k'} xe_k' \right\|.$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Hence it follows from the assumption that \(\{ \sum_{i=1}^{n} xye_k \} \) is a Cauchy sequence in \(A \). Therefore, there exists an element \(z \in A \) such that \(z = \sum_{k=1}^{\infty} xye_k \) in \(||\cdot|| \). Also \(xy = \sum_{k=1}^{\infty} xye_k \) in \(||\cdot|| \). Hence it follows that \(xy = z \in A \). Similarly we can show that \(yx \in A \). Thus \(A \) is a two-sided ideal of \(B \) and this completes the proof of the theorem.

Remark 1. (i) \(\Rightarrow \) (iii) in the above theorem was obtained by Ogasawara and Yoshinaga for \(A^* \)-algebras (see [9, p. 30, Theorem 16]). Also (iii) \(\Rightarrow \) (i) was proved by them for weakly complete commutative \(A^* \)-algebras (see [9, p. 35, Theorem 2.3]). Some arguments in the proof of (ii) \(\Rightarrow \) (iii) of Theorem 5.2 are similar to those in the proof of [9, p. 30, Theorem 16].

Remark 2. If \(B \) is not a \(B^* \)-algebra, then Theorem 5.2 is not true. In fact, let \(G \) be an infinite compact group and let \(A \) be the algebra of all continuous functions on \(G \), normed by the maximum of the absolute value. It is well known that \(L^2(G) \) is an \(A^* \)-algebra and \(A \) is a dual \(A^* \)-algebra which is a dense two-sided ideal of \(L^2(G) \). However condition (iii) of Theorem 5.2 is not valid for \(A \). Since \(L^2(G) \) is a proper \(H^* \)-algebra, condition (iii) holds for \(L^2(G) \).

Corollary 5.3. Let \(A \) be a reflexive \(A^* \)-algebra which is a dense subalgebra of a \(B^* \)-algebra \(B \). Then the following statements are equivalent:

(i) \(A \) is a two-sided ideal of \(B \).

(ii) \(A \) is a dual algebra and, for any orthogonal family of hermitian minimal idempotents \(\{ e_\lambda : \lambda \in \Lambda \} \) of \(B \) and \(x \in A \), the set \(\{ \sum_{k=1}^{n} e_\lambda x : \lambda, k \in \Lambda \} \) is bounded in \(A \).

Proof. (i) \(\Rightarrow \) (ii). This follows immediately from [13, p. 831, Theorem 5.4] and Theorem 5.2 (ii).

(ii) \(\Rightarrow \) (i). Suppose (ii) holds. Since \(A \) is reflexive, \(\{ \sum_{k=1}^{n} e_\lambda x : \lambda, k \in \Lambda \} \) has weak limit points in \(A \). By the proof of Theorem 5.2, it has a unique weak limit point and so \(\sum_{\lambda} e_\lambda x \) is summable in the norm of \(A \). Therefore \(A \) is a two-sided ideal of \(B \) by Theorem 5.2.

It is well known that a reflexive \(B^* \)-algebra is finite dimensional. The following corollary is a generalization of this result.

Corollary 5.4. Let \(A \) be a reflexive \(A^* \)-algebra which is a dense two-sided ideal of a \(B^* \)-algebra \(B \). If \(A \) has an approximate identity, then \(A \) is finite dimensional.

Proof. It follows immediately from [5, p. 855, Lemma 3.8] and Corollary 5.3 that \(A \) is a dual algebra with an identity. Therefore \(A \) is finite dimensional.

It is well known that \(B \) is Arens regular if \(B \) is a \(B^* \)-algebra. Let \(A \) be a semisimple dual Banach algebra which is a dense two-sided ideal of a \(B^* \)-algebra \(B \). Is \(A \) Arens regular? This question was asked in [13, p. 833]. We shall answer this question affirmatively.
Notation. In the rest of this section, B^{**} with the Arens product will be denoted by $(B^{**}, *)$.

Lemma 5.5. Suppose B is a dual B^*-algebra and S its socle. Let B' be the closed subspace of B^* spanned by $\pi_B(x) \ast g$, where $x \in S$ and $g \in B^*$. Then B^* coincides with B'.

Proof. Suppose this is not true. Then there exists a nonzero linear functional $F \in B^{**}$ such that $F(B') = (0)$. Hence, for all $x \in S$, $(F \ast \pi_B(x))(g) = F(\pi_B(x) \ast g) = 0$. Since S is weakly dense in B^{**}, it follows that $F \ast B^{**} = (0)$. Since B^{**} is a B^*-algebra, we have $F = 0$, a contradiction. Therefore B^* coincides with B'.

In the rest of this section, let A be a semisimple Banach algebra which is a dense two-sided ideal of a B^*-algebra B. By [2, p. 3, Proposition 2.2], there exists a constant k such that $k\|x\| \geq \|x\|$ on A and consequently by [2, p. 3, Theorem 2.3] there exists a constant M such that $\|ab\| \leq M\|a\|\|b\|$ and $\|ba\| \leq M\|a\|\|b\|$ for all $a \in A, b \in B$. For each $g \in B^*$, let g_A denote the restriction of g to A. Then it is easy to see that $g_A \in A^*$. For every element $F \in A^{**}$, let \tilde{F} be the linear functional on B^* defined by $\tilde{F}(g) = F(g_A)$ $(g \in B^*)$. Then $\tilde{F} \in B^{**}$. Let $b \in B$ and $f \in A^*$. Define $(f \circ b)(a) = f(ba)$ $(a \in A)$. Since $|f \circ b(a)| \leq M\|f\|\|b\|\|a\|$, it follows that $f \circ b \in A^*$.

As before, let R^{**} denote the radical of (A^{**}, \circ).

Lemma 5.6. Suppose A is an annihilator algebra. Then the following statements hold:

(i) For each $R \in R^{**}$ and $g \in B^*$, we have $\tilde{R}(g) = 0$.

(ii) R^{**} is the left and right annihilator of (A^{**}, \circ).

Proof. (i) Let $g \in B^*$. By Lemma 5.5, we can write $g = \lim_n g_n$ where $g_n = \sum_{i=1}^m \pi_B(x^n_i) \ast g^n_i$ with $x^n_i \in S$ (the socle of B) and $g^n_i \in B^*$. Clearly $x^n_i \in A$. Then for each $R \in R^{**}$, we have

$$\tilde{R}(g) = \lim_n \sum_{i=1}^m \tilde{R}(\pi_B(x^n_i) \ast g^n_i) = \lim_n \sum_{i=1}^m (R \circ \pi_A(x^n_i))(g^n_i)_A.$$

By Theorem 4.1, we have $R \circ \pi_A(x^n_i) = 0$ and therefore $\tilde{R}(g) = 0$. This proves (i).

(ii) For each $F \in A^{**}$ and $f \in A^*$, define $\tilde{f}_F = F(f \circ b)$ $(b \in B)$. Then it is easy to see that $\tilde{f}_F \in B^*$ and $\tilde{f}_F = F \circ f$. Then for all $R \in R^{**}$, we have $(R \circ F)(f) = R(F \circ f) = \tilde{R}(\tilde{f}_F)$. Therefore by (i), $R \circ F = 0$ and so $R^{**} \circ A^{**} = (0)$. By Theorem 4.1, we also have $A^{**} \circ R^{**} = (0)$ and this completes the proof.

Now we are ready to prove the following result:
Theorem 5.7. Let \(A \) be a semisimple dual Banach algebra which is a dense two-sided ideal of a \(B^* \)-algebra. Then the following statements hold:

(i) \(A \) is Arens regular.

(ii) \(A^{**}/R^{**} \) is a semisimple Banach algebra which is a dense two-sided ideal of some \(B^* \)-algebra.

Proof. (i) Let \(\{e_{\lambda} : \lambda \in \Lambda\} \) be a maximal orthogonal family of hermitian minimal idempotents in \(B \). Let \(\{E_\beta\} \) be the direct set of all finite sums \(e_{\lambda_1} + e_{\lambda_2} + \cdots + e_{\lambda_n} \) \((\lambda_n \in \Lambda, \ n = 1, 2, \cdots) \). Let \(F \) and \(G \) be two functionals in \(A^{**} \). Since \(\|F \circ \pi_A(E_\beta)\| \leq M\|F\| \|E_\beta\| = M\|F\| \), it follows from Alaoglu’s theorem that \(\{F \circ \pi_A(E_\beta)\} \) has weak limit points in \(A^{**} \). Let \(\{E_a\} \) be a subnet of \(\{E_\beta\} \) and \(F_1 \in A^{**} \) such that \(F \circ \pi_A(E_a) \rightharpoonup F_1 \) weakly. By a similar argument, there exists a subnet \(\{E_\gamma\} \) of \(\{E_a\} \) and \(G_1 \in A^{**} \) such that \(\pi_A(E_\gamma) \circ G \rightharpoonup G_1 \) weakly. Let \(a \in A \). Then by Theorem 5.2, \(a = \sum_\lambda e_\lambda a \in \|\cdot\| \). Hence \(E_\beta a \rightharpoonup a \) weakly. Thus \(E_\gamma a \rightharpoonup a \) weakly. Since \(F \circ \pi_A(x) = F \circ \pi_A(x) \) for all \(x \in A \), we have \(E \circ \pi_A(a) = \text{weak limit} \ F \circ \pi_A(E_\beta a) = F \circ \pi_A(a) \). Since \(\pi_A(A) \) is weakly dense in \(A^{**} \), it follows that \((F - F_1) \circ A^{**} = (0) \) and so by Theorem 4.1, \(F - F_1 \in R^{**} \). Similarly we can show that \(G_1 - G \in R^{**} \). Then by Lemma 5.6, we have

\[
F \circ G = (F_1 + (F - F_1)) \circ G = F_1 \circ G
\]

\[
= \text{weak lim } F \circ \pi_A(E_\gamma) \circ G = \text{weak lim } F \circ \pi_A(E_\gamma) \circ G
\]

\[
= F \circ G.
\]

Therefore \(A \) is Arens regular by definition and this proves (i).

(ii) Now the algebra \(A^{**}/R^{**} \) is a semisimple Banach algebra. For each \(a \in A \) and \(f \in A^* \), define \((f \ast a)(b) = f(ab) \) \((b \in B) \). Then \(f \ast a \in B^* \). For each \(F \in A^{**} \), we write \(\tilde{F} = F + R^{**} \) and define a mapping \(\Phi \) from \(A^{**}/R^{**} \) into \(B^{**} \) by \(\Phi(\tilde{F}) = \tilde{F} - F \) \((F \in A^{**}) \). Suppose \(\Phi(\tilde{F}) = 0 \). Then \(\tilde{F}(f \ast a) = 0 \) and therefore \((\pi_A(a) \circ F)(f) = 0 \) for all \(a \in A \) and \(f \in A^* \). Consequently \(F \in R^{**} \) and therefore \(\tilde{F} = R^{**} \). Hence it follows that \(\Phi \) is an isomorphism of \(A^{**}/R^{**} \) into \(B^{**} \). For each \(g \in B^* \), we have \(\|g_A\| \leq k|g| \). Since by Lemma 5.5 (i), \(R(g_A) = 0 \) for all \(R \in R^{**} \), straightforward calculations yield that \(k\|F + R\| \geq \|\tilde{F}\| \) for all \(F \in A^{**} \). Hence \(k\|\tilde{F}\| \geq \|\tilde{F}\| \) and consequently \(\Phi \) is continuous. For each \(H \in B^{**} \), define \((H \circ f)(a) = H(f \ast a) \) \((f \in A^*, \ a \in A) \). Then \(H \circ f \in A^* \). For each \(F \in A^{**} \), define \(F_H(f) = F((H \circ f))(f \in A^*, \ F \in A^{**}) \). Then \(F_H \in A^{**} \). For each \(g \in B^* \), we have

\[
\tilde{F}_H(g) = F((H \circ g_A)) = F((H \ast g)_A) = (\tilde{F} \ast H)(g).
\]

Therefore \(\tilde{F} \ast H = \tilde{F}_H \). Consequently \(\Phi(A^{**}/R^{**}) \) is a two-sided ideal of \(B^{**} \). Let \(Q \) be the norm closure of \(\Phi(A^{**}/R^{**}) \) in \(B^{**} \). Then \(Q \) is a closed two-
sided ideal of B^{**}. Since B^{**} is a B^*-algebra, so is Q. This completes the proof of the theorem.

Remark. We know that the above result is not true for arbitrary dual A^*-algebras (see [13, p. 833, Remark]). Also if A is a dual A^*-algebra which is Arens regular, A may not be a two-sided ideal of its completion in an auxiliary norm; in fact, A can be reflexive (see [9, p. 35]).

Let $\mathfrak{A} = A^{**}/R^{**}$. Clearly, we can identify A as a closed two-sided ideal of \mathfrak{A}.

Corollary 5.8. Let A be as in Theorem 5.7. Then \mathfrak{A} coincides with A if and only if the socle of \mathfrak{A} is dense in \mathfrak{A}.

Proof. We use the notation in the proof of Theorem 5.7. Suppose the socle of \mathfrak{A} is dense in \mathfrak{A}. Then Q is a dual B^*-algebra. For each minimal idempotent $e \in Q$ and $b \in B$, we have $e = ke\pi_B(b)e \in \pi_B(B)$, where k is a constant.

Hence it follows that $Q = B$. Now it is easy to see that $\mathfrak{A}^2 \subset A$. Since the socle of \mathfrak{A} is dense in \mathfrak{A}, $\mathfrak{A} \subset A$ and so $\mathfrak{A} = A$. The converse of the corollary is clear and this completes the proof.

If A is reflexive, then it is clear that A^{**} is semisimple. However, in general, A^{**} may not be semisimple as shown in [13, p. 831, Theorem 5.5].

Corollary 5.9. Let A be as in Theorem 5.7. Then A^{**} is semisimple if and only if A^* is spanned by $\pi_A(x) \circ f$, where $f \in A^*$ and $x \in A$.

Proof. Suppose A^* is spanned by $\pi_A(x) \circ f$. Let $F \in R^{**}$. Since $F \circ \pi_A(x) = 0$ for all $x \in A$, it follows that $F(f) = 0$ for all $f \in A^*$. Hence $F = 0$. The converse of the corollary follows immediately from the proof of Lemma 5.5.

Let A be a Banach $*$-algebra. For all $x \in A$, $f \in A^*$ and $F \in A^{**}$, we define

$$f^*(x) = \overline{f(x^*)}$$

and

$$F^*(f) = \overline{F(f^*)},$$

where the bar denotes the complex conjugation. If A is a B^*-algebra, then A^{**} is a B^*-algebra under the involution $F \rightarrow F^*$ (see [11, p. 192]).

Corollary 5.10. Let A be a dual A^*-algebra which is a dense two-sided ideal of a B^*-algebra B. Then (A^{**}, \circ) is a $*$-algebra and A^{**}/R^{**} is an A^*-algebra which is a dense two-sided ideal of a B^*-algebra.

Proof. By Theorem 5.7, A is Arens regular and so A^{**} is a $*$-algebra under the involution $F \rightarrow F^*$ by [11, p. 186, Theorem 1]. Clearly R^{**} is a $*$-ideal of A^{**}. Now the corollary follows easily from Theorem 5.7.

It was asked in [13, p. 833] whether the algebra C_p^{**} is semisimple. If
$1 < p < \infty$, then C_p is reflexive (see [8, p. 265]) and, therefore, it is semisimple. If $p = 1$, then by [12, p. 831, Theorem 5.5], C_1^{**} is not semisimple unless it is finite dimensional.

REFERENCES

DEPARTMENT OF MATHEMATICS, SETON HALL UNIVERSITY, SOUTH ORANGE, NEW JERSEY 07079