The structure of Dedekind cardinals
HTML articles powered by AMS MathViewer
- by Erik Ellentuck
- Trans. Amer. Math. Soc. 180 (1973), 109-125
- DOI: https://doi.org/10.1090/S0002-9947-1973-0325396-9
- PDF | Request permission
Abstract:
Semantic criteria are given for provability in set theory without the axiom of choice of positive sentences about the Dedekind cardinals. These criteria suggest that Dedekind cardinals (as well as general cardinals) have an internal structure.References
- Paul J. Cohen, Set theory and the continuum hypothesis, W. A. Benjamin, Inc., New York-Amsterdam, 1966. MR 0232676
- William B. Easton, Powers of regular cardinals, Ann. Math. Logic 1 (1970), 139–178. MR 269497, DOI 10.1016/0003-4843(70)90012-4
- Erik Ellentuck, The universal properties of Dedekind finite cardinals, Ann. of Math. (2) 82 (1965), 225–248. MR 180494, DOI 10.2307/1970643
- Erik Ellentuck, The first order properties of Dedekind finite integers, Fund. Math. 63 (1968), 7–25. MR 238689, DOI 10.4064/fm-63-1-7-25
- Erik Ellentuck, Extension methods in cardinal arithmetic, Trans. Amer. Math. Soc. 149 (1970), 307–325. MR 256868, DOI 10.1090/S0002-9947-1970-0256868-0
- Erik Ellentuck, Almost combinatorial Skolem functions, J. Symbolic Logic 35 (1970), 65–72. MR 281601, DOI 10.2307/2271157
- Louise Hay, The co-simple isols, Ann. of Math. (2) 83 (1966), 231–256. MR 205845, DOI 10.2307/1970429
- A. Mostowski, Formal system of analysis based on an infinitistic rule of proof, Infinitistic Methods (Proc. Sympos. Foundations of Math., Warsaw, 1959), Pergamon, Oxford; Państwowe Wydawnictwo Naukowe, Warsaw, 1961, pp. 141–166. MR 0201301
- Anil Nerode, Extensions to isols, Ann. of Math. (2) 73 (1961), 362–403. MR 131363, DOI 10.2307/1970338 —, Arithmetically isolated sets and nonstandard models, Proc. Sympos. Pure Math., vol. 5, Amer. Math. Soc., Providence, R.I., 1962, 105-116. MR 26 #1251.
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 180 (1973), 109-125
- MSC: Primary 02K35
- DOI: https://doi.org/10.1090/S0002-9947-1973-0325396-9
- MathSciNet review: 0325396