## Maximal regular right ideal space of a primitive ring. II

HTML articles powered by AMS MathViewer

- by Kwangil Koh and Hang Luh PDF
- Trans. Amer. Math. Soc.
**180**(1973), 127-141 Request permission

## Abstract:

If $R$ is a ring, let $X(R)$ be the set of maximal regular right ideals of $R$. For each nonempty subset $E$ of $R$, define the*hull*of $E$ to be the set $\{ I \epsilon X(R)|\ E \subseteq I\}$ and the

*support of*$E$ to be the complement of the hull of $E$. Topologize $X(R)$ by taking the supports of right ideals of $R$ as a subbase. If $R$ is a right primitive ring, then $X(R)$ is homeomorphic to an open subset of a compact space $X({R^\# })$ of a right primitive ring ${R^\# }$, and $X(R)$ is a discrete space if and only if $X(R)$ is a compact Hausdorff space if and only if either $R$ is a finite ring or a division ring. Call a closed subset $F$ of $X(R)$ a

*line*if $F$ is the hull of $I \cap J$ for some two distinct elements $I$ and $J$ in $X(R)$. If $R$ is a semisimple ring, then every line contains an infinite number of points if and only if either $R$ is a division ring or $R$ is a dense ring of linear transformations of a vector space of dimension two or more over an infinite division ring such that every pair of simple (right) $R$-modules are isomorphic.

## References

- Nathan Jacobson,
*Structure of rings*, Revised edition, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, Providence, R.I., 1964. MR**0222106** - R. E. Johnson,
*Structure theory of faithful rings. I. Closure operations on lattices. II. Restricted rings*, Trans. Amer. Math. Soc.**84**(1957), 508–522, 523–544. MR**84493**, DOI 10.1090/S0002-9947-1957-99935-6 - Kwangil Koh and Jiang Luh,
*Maximal regular right ideal space of a primitive ring*, Trans. Amer. Math. Soc.**170**(1972), 269–277. MR**304413**, DOI 10.1090/S0002-9947-1972-0304413-5 - I. G. Macdonald,
*Algebraic geometry. Introduction to schemes*, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR**0238845** - G. O. Michler and O. E. Villamayor,
*On rings whose simple modules are injective*, Comptes-Rendus des Journées d’Algèbre Pure et Appliquée (Univ. Sci. Tech. Languedoc, Montpellier, 1971) Univ. Sci. Tech. Languedoc, Montpellier, 1971, pp. 212–238. MR**0332881**
J. von Neumann,

*On regular rings*, Proc. Nat. Acad. Sci. U. S. A.

**22**(1936), 707-713.

## Additional Information

- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**180**(1973), 127-141 - MSC: Primary 16A20
- DOI: https://doi.org/10.1090/S0002-9947-1973-0338049-8
- MathSciNet review: 0338049