Maximal regular right ideal space of a primitive ring. II
HTML articles powered by AMS MathViewer
- by Kwangil Koh and Hang Luh
- Trans. Amer. Math. Soc. 180 (1973), 127-141
- DOI: https://doi.org/10.1090/S0002-9947-1973-0338049-8
- PDF | Request permission
Abstract:
If $R$ is a ring, let $X(R)$ be the set of maximal regular right ideals of $R$. For each nonempty subset $E$ of $R$, define the hull of $E$ to be the set $\{ I \epsilon X(R)|\ E \subseteq I\}$ and the support of $E$ to be the complement of the hull of $E$. Topologize $X(R)$ by taking the supports of right ideals of $R$ as a subbase. If $R$ is a right primitive ring, then $X(R)$ is homeomorphic to an open subset of a compact space $X({R^\# })$ of a right primitive ring ${R^\# }$, and $X(R)$ is a discrete space if and only if $X(R)$ is a compact Hausdorff space if and only if either $R$ is a finite ring or a division ring. Call a closed subset $F$ of $X(R)$ a line if $F$ is the hull of $I \cap J$ for some two distinct elements $I$ and $J$ in $X(R)$. If $R$ is a semisimple ring, then every line contains an infinite number of points if and only if either $R$ is a division ring or $R$ is a dense ring of linear transformations of a vector space of dimension two or more over an infinite division ring such that every pair of simple (right) $R$-modules are isomorphic.References
- Nathan Jacobson, Structure of rings, Revised edition, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, Providence, R.I., 1964. MR 0222106
- R. E. Johnson, Structure theory of faithful rings. I. Closure operations on lattices. II. Restricted rings, Trans. Amer. Math. Soc. 84 (1957), 508–522, 523–544. MR 84493, DOI 10.1090/S0002-9947-1957-99935-6
- Kwangil Koh and Jiang Luh, Maximal regular right ideal space of a primitive ring, Trans. Amer. Math. Soc. 170 (1972), 269–277. MR 304413, DOI 10.1090/S0002-9947-1972-0304413-5
- I. G. Macdonald, Algebraic geometry. Introduction to schemes, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0238845
- G. O. Michler and O. E. Villamayor, On rings whose simple modules are injective, Comptes-Rendus des Journées d’Algèbre Pure et Appliquée (Univ. Sci. Tech. Languedoc, Montpellier, 1971) Univ. Sci. Tech. Languedoc, Montpellier, 1971, pp. 212–238. MR 0332881 J. von Neumann, On regular rings, Proc. Nat. Acad. Sci. U. S. A. 22 (1936), 707-713.
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 180 (1973), 127-141
- MSC: Primary 16A20
- DOI: https://doi.org/10.1090/S0002-9947-1973-0338049-8
- MathSciNet review: 0338049