Multipliers and linear functionals for the class $N^{+}$
HTML articles powered by AMS MathViewer
- by Niro Yanagihara
- Trans. Amer. Math. Soc. 180 (1973), 449-461
- DOI: https://doi.org/10.1090/S0002-9947-1973-0338382-X
- PDF | Request permission
Abstract:
Multipliers for the classes ${H^p}$ are studied recently by several authors, see Duren’s book, Theory of ${H^p}$ spaces, Academic Press, New York, 1970. Here we consider corresponding problems for the class ${N^ + }$ of holomorphic functions in the unit disk such that \[ \lim \limits _{r \to 1} \int _0^{2\pi } {{{\log }^ + }} |f(r{e^{i\theta }})|d\theta = \int _0^{2\pi } {{{\log }^ + }|f({e^{i\theta }})|} d\theta < \infty .\] Our results are: 1. ${N^ + }$ is an $F$-space in the sense of Banach with the distance function \[ \rho (f,g) = \frac {1}{{2\pi }}\int _0^{2\pi } {\log (1 + |f({e^{i\theta }}) - g({e^{i\theta }})|)} d\theta .\] 2. A complex sequence $\Lambda = \{ {\lambda _n}\}$ is a multiplier for ${N^ + }$ into ${H^q}$ for a fixed $q,0 < q < \infty$, if and only if ${\lambda _n} = O(\exp [ - c\sqrt n ])$ for a positive constant $c$. 3. A continuous linear functional $\phi$ on the space ${N^ + }$ is represented by a holomorphic function $g(z) = \Sigma {b_n}{z^n}$ which satisfies ${b_n} = O(\exp [ - c\sqrt n ])$ for a positive constant $c$. Conversely, such a function $g(z) = \Sigma {b_n}{z^n}$ defines a continuous linear functional on the space ${N^ + }$.References
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- P. L. Duren, On the multipliers of $H^{p}$ spaces, Proc. Amer. Math. Soc. 22 (1969), 24–27. MR 241651, DOI 10.1090/S0002-9939-1969-0241651-X —, Theory of ${H^p}$ spaces, Pure and Appl. Math., vol. 38, Academic Press, New York, 1970. MR 42 #3552.
- P. L. Duren, B. W. Romberg, and A. L. Shields, Linear functionals on $H^{p}$ spaces with $0<p<1$, J. Reine Angew. Math. 238 (1969), 32–60. MR 259579
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- T. Gamelin and G. Lumer, Theory of abstract Hardy spaces and the universal Hardy class, Advances in Math. 2 (1968), 118–174. MR 226392, DOI 10.1016/0001-8708(68)90019-4
- I. I. Privalov, Graničnye svoĭstva analitičeskih funkciĭ, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950 (Russian). 2d ed.]. MR 0047765 N. Yanagihara, Mean growth and Taylor coefficients of some classes of functions (to appear).
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 180 (1973), 449-461
- MSC: Primary 30A78
- DOI: https://doi.org/10.1090/S0002-9947-1973-0338382-X
- MathSciNet review: 0338382