Quasiconformal mappings and sets of finite perimeter
HTML articles powered by AMS MathViewer
- by James C. Kelly
- Trans. Amer. Math. Soc. 180 (1973), 367-387
- DOI: https://doi.org/10.1090/S0002-9947-1973-0357783-7
- PDF | Request permission
Abstract:
Let $D$ be a domain in ${R^n},n \geqslant 2,f$ a quasiconformal mapping on $D$. We give a definition of bounding surface of codimension one lying in $D$, and show that, given a system $\Sigma$ of such surfaces, the image of the restriction of $f$ to “almost every” surface is again a surface. Moreover, on these surfaces, $f$ takes ${H^{n - 1}}$ (Hausdorff $(n - 1)$-dimensional) null sets to ${H^{n - 1}}$ null sets. “Almost every” surface is given a precise meaning via the concept of the module of a system of measures, a generalization of the concept of extremal length.References
- Stephen Agard, Angles and quasiconformal mappings in space, J. Analyse Math. 22 (1969), 177–200. MR 252635, DOI 10.1007/BF02786789 —, Quasiconformal mappings and the moduli of $p$-dimensional surface. families, Proc. Romanian-Finnish Sem. Teichmüller Spaces Quasiconform. Mappings, Brasov 1969, 1971, pp. 9-48.
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Herbert Federer, A note on the Gauss-Green theorem, Proc. Amer. Math. Soc. 9 (1958), 447–451. MR 95245, DOI 10.1090/S0002-9939-1958-0095245-2
- Bent Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171–219. MR 97720, DOI 10.1007/BF02404474
- F. W. Gehring, Symmetrization of rings in space, Trans. Amer. Math. Soc. 101 (1961), 499–519. MR 132841, DOI 10.1090/S0002-9947-1961-0132841-2
- F. W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353–393. MR 139735, DOI 10.1090/S0002-9947-1962-0139735-8
- F. W. Gehring, Extremal length definitions for the conformal capacity of rings in space, Michigan Math. J. 9 (1962), 137–150. MR 140683, DOI 10.1307/mmj/1028998672
- A. P. Kopylov, The behavior of a three-dimensional quasiconformal mapping on plane sections of the region of definition, Dokl. Akad. Nauk SSSR 167 (1966), 743–746 (Russian). MR 0199382
- H. M. Riemann, Über das Verhalten von Flächen unter quasikonformen Abbildungen im Raum, Ann. Acad. Sci. Fenn. Ser. A. I. 470 (1970), 27 (German). MR 296290
- Ju. G. Rešetnjak, Certain geometric properties of functions and mappings with generalized derivatives, Sibirsk. Mat. Ž. 7 (1966), 886–919 (Russian). MR 0203013
- Jussi Väisälä, On quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. A I 298 (1961), 36. MR 0140685
- Jussi Väisälä, Two new characterizations for quasiconformality, Ann. Acad. Sci. Fenn. Ser. A I 362 (1965), 12. MR 0174782 —, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., vol. 229, Springer-Verlag, Berlin and New York, 1971.
- William P. Ziemer, Some lower bounds for Lebesgue area, Pacific J. Math. 19 (1966), 381–390. MR 202971, DOI 10.2140/pjm.1966.19.381
- William P. Ziemer, Extremal length and conformal capacity, Trans. Amer. Math. Soc. 126 (1967), 460–473. MR 210891, DOI 10.1090/S0002-9947-1967-0210891-0
- William P. Ziemer, Change of variables for absolutely continuous functions, Duke Math. J. 36 (1969), 171–178. MR 237725
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 180 (1973), 367-387
- MSC: Primary 30A60; Secondary 28A75
- DOI: https://doi.org/10.1090/S0002-9947-1973-0357783-7
- MathSciNet review: 0357783