\(\alpha_T\) IS FINITE FOR \(\aleph_1\)-CATEGORICAL \(T\)

BY

JOHN T. BALDWIN(1)

ABSTRACT. Let \(T\) be a complete countable \(\aleph_n\)-categorical theory.

Definition. If \(\mathcal{A}\) is a model of \(T\) and \(A\) is a 1-ary formula in \(L(\mathcal{A})\) then \(A\)
has rank 0 if \(A(\mathcal{A})\) is finite. \(A(\mathcal{A})\) has rank \(n\) degree \(m\) iff for every set of
m + 1 formulas \(B_1, \ldots, B_{m+1} \in S_1(L(\mathcal{A}))\) which partition \(A(\mathcal{A})\) some \(B_i(\mathcal{A})\) has
rank \(\leq n - 1\). Theorem. If \(T\) is \(\aleph_1\)-categorical then for every \(\mathcal{A}\) a model of \(T\)
and every \(A \in S_1(L(\mathcal{A}))\), \(A(\mathcal{A})\) has finite rank. Corollary. \(\alpha_T\) is finite. The
methods derive from Lemmas 9 and 11 in "On strongly minimal sets" by Baldwin
and Lachlan. \(\alpha_T\) is defined in "Categoricity in power" by Michael Morley.

In [4] Morley assigns an ordinal \(\alpha_T\) to each complete theory \(T\). He conjectures that if \(T\) is \(\aleph_1\)-categorical \(\alpha_T\) is finite. In this paper we prove this conjecture.

We assume familiarity with [1] and [4] but for convenience we list the principal results and definitions from those papers which are used here. Our notation is the same as in [1] with the following exceptions.

We deal with a countable first order language \(L\). We may extend the language \(L\) in several ways. If \(\mathcal{A}\) is an \(L\)-structure there is a natural extension \(L(\mathcal{A})\) of \(L\) obtained by adjoining to \(L\) a constant \(a\) for each \(a \in |\mathcal{A}|\) (the universe of \(\mathcal{A}\)). For each sentence \(A(a_1, \ldots, a_n) \in L(\mathcal{A})\) we say \(\mathcal{A}\) satisfies \(A(a_1, \ldots, a_n)\) and write \(\mathcal{A} \models A(a_1, \ldots, a_n)\) if in Shoenfield's notation \(\mathcal{A}(A(a_1, \ldots, a_n)) = T\) [7, p. 19]. If \(\mathcal{A}\) is an \(L\)-structure and \(X\) is a subset of \(|\mathcal{A}|\) then \(L(X)\) is the language obtained by adjoining to \(L\) a name \(x\) for each \(x \in X\). \((\mathcal{A}, X)\) is the natural expansion of \(\mathcal{A}\) to an \(L(X)\)-structure. A structure \(\mathcal{B}\) is an inessential expansion [7, p. 141] of an \(L\)-structure \(\mathcal{A}\) if \(\mathcal{B} = (\mathcal{A}, X)\) for some \(X \subseteq |\mathcal{A}|\).

\(S_n(L)\) denotes the set of formulas of \(L\) with free variables among \(v_0, \ldots, v_{n-1}\). If \(A\) is a formula such that \(u_1, \ldots, u_n\) in the natural order are the free variables in \(A\), then \(A(\mathcal{A})\) is the set of \(n\)-tuples \(b_1, \ldots, b_n\) such that

Presented to the Society, August 6, 1970; received by the editors February 24, 1971.

AMS (MOS) subject classifications (1970). Primary 02H05.

Key words and phrases. \(\aleph_1\)-categorical, strongly minimal, \(\alpha_T\).

(1) This material was contained in a Ph. D. thesis prepared under the direction of
A. H. Lachlan and submitted to Simon Fraser University. The research was supported by a
National Research Council Post Graduate Scholarship.
38 J. T. BALDWIN

$\mathfrak{A} \models A_{u_1, \ldots, u_n}(b_1, \ldots, b_n)$. If p is a unary predicate symbol we abbreviate $pv_0(\mathfrak{A})$ by $p(\mathfrak{A})$.

A consistent set of L-sentences is a theory in L. If T and T' are theories in L then T' extends T if $T \subseteq T'$. If T is a theory in a language L then T' is an inessential extension of T if there is a model \mathfrak{A} of T and a subset X of $|\mathfrak{A}|$ such that $T' = Th(\mathfrak{A}, X)$ (i.e., the set of all sentences in $L(X)$ true of (\mathfrak{A}, X)). T' is a principal extension of T if T' is an inessential extension of T by a finite number of constants and a set of nonlogical axioms for T' can be obtained by adjoining a finite set of sentences to a set of nonlogical axioms for T.

Let Γ be a subset of $S_k(L)$. Then Γ is a k-type in T if there is some model \mathfrak{A} of T and elements $a_1, \ldots, a_k \in |\mathfrak{A}|$ such that $\mathfrak{A} \models A(a_1, \ldots, a_k)$ if and only if $A \in \Gamma$. If \mathfrak{A} is a model of T and $X \subseteq |\mathfrak{A}|$ then a k-type Γ is realized in X if there exists $x_1, \ldots, x_k \in X$ such that $\mathfrak{A} \models A(x_1, \ldots, x_k)$ for each $A \in \Gamma$. A k-type Γ is a principal k-type in T if there is a formula $A \in S_k(L(\mathfrak{A}))$ such that, for each formula B in Γ, $\mathfrak{A} \models \forall v_0, \ldots, \forall v_{k-1}(A \rightarrow B)$. Since T is complete there is one 0-type truth.

Following Morley [4] we assume that each $T = \Sigma^*$ for some Σ and thus that each n-ary formula Φ is equivalent in T to an n-ary relation A. $\mathfrak{N}(T)$ is a set of all substructures of models of T. The following summarizes with slight changes in notation the second paragraph of §2 in [4]. If \mathfrak{A} is an L-structure $\mathfrak{A}(\mathfrak{A})$ is the set of all open sentences in $L(\mathfrak{A})$ which are true in $(\mathfrak{A}, |A|)$. If $\mathfrak{A} \in \mathfrak{N}(T)$, $T(\mathfrak{A}) = \mathfrak{A}(\mathfrak{A}) \cup T$ is a complete theory in $L(\mathfrak{A})$. Let $S_k(\mathfrak{A})$ denote the Boolean algebra whose elements are the equivalence classes into which $S_k(L(\mathfrak{A}))$ is partitioned by the relation of equivalence in $T(\mathfrak{A})$, and whose operations of intersection, union, and complementation are those induced by conjunction, disjunction and negation respectively. The Stone space of $S_1(\mathfrak{A})$, the set of dual prime ideals of $S_1(\mathfrak{A})$, is a topological space denoted $S(\mathfrak{A})$. A dual prime ideal of $S_k(\mathfrak{A})$ is a k-type of $T(\mathfrak{A})$. This is a special case of the definition of k-type in the preceding paragraph. Note that, if $p \in S(\mathfrak{A})$ and \mathfrak{A}' is an inessential expansion of \mathfrak{A}, p is naturally a member of $S(\mathfrak{A}')$.

In [4] Morley makes the following definition. For each ordinal α and each $\mathfrak{A} \in \mathfrak{N}(T)$, subspaces $S^\alpha(\mathfrak{A})$ and $Tr^\alpha(\mathfrak{A})$ of $S(\mathfrak{A})$ are defined inductively by

1. $S^\alpha(\mathfrak{A}) = S(\mathfrak{A}) - \bigcup_{\beta < \alpha} Tr^\beta(\mathfrak{A})$,

2. $p \in Tr^\alpha(\mathfrak{A})$ if (i) $p \in S^\alpha(\mathfrak{A})$ and (ii) for every map $f^* : S(\mathfrak{B}) \rightarrow S(\mathfrak{A})$ where $\mathfrak{B} \in \mathfrak{N}(T)$ and f is a monomorphism from \mathfrak{A} into \mathfrak{B}, $f^* \circ p \cap S^\alpha(\mathfrak{B})$ is a set of isolated points in $S^\alpha(\mathfrak{B})$. (See [4, p. 519] for the definition of f^*).

If $i_{\mathfrak{B}}$ is an elementary embedding of \mathfrak{A} into \mathfrak{B} then $i_{\mathfrak{B}}^*$ maps $S(\mathfrak{B})$ onto $S(\mathfrak{A})$. Note that $q \in i_{\mathfrak{B}}^*^{-1}(p)$ is equivalent to $q \cap S_1(L(\mathfrak{A})) = p$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
An element p of $S(L(\bar{\mathfrak{A}}))$ is algebraic if $p \in \text{Tr}^{0}(\bar{\mathfrak{A}})$; p is transcendental in rank α if $p \in \text{Tr}^{\alpha}(\bar{\mathfrak{A}})$. If $A \in S_{1}(L(\bar{\mathfrak{A}}))$, $\bigcup_{A} = \{p| p \in S(\bar{\mathfrak{A}}) \land A \in p\}$.

The following definitions are originally due to Marsh [3]. Let $\bar{\mathfrak{A}}$ be an L-structure and X a subset of $|\bar{\mathfrak{A}}|$. The algebraic closure of X, denoted by $\text{cl}(X)$, is the union of all finite subsets of $|\bar{\mathfrak{A}}|$ definable in $((\bar{\mathfrak{A}}, X)$. X spans Y if $Y \subseteq \text{cl}(X)$. X is independent if for each $x \in X$, $x \not\in \text{cl}(X - \{x\})$. X is a basis for Y if X is an independent subset of Y which spans Y. If every basis for Y has the same cardinality μ, we define the dimension of Y to be μ and write $\text{dim}(Y) = \mu$.

Let $\bar{\mathfrak{A}}$ be an L-structure. A subset X of $|\bar{\mathfrak{A}}|$ is minimal in $\bar{\mathfrak{A}}$ if X is infinite, definable in $\bar{\mathfrak{A}}$, and for any subset Y of $|\bar{\mathfrak{A}}|$ which is definable in $\bar{\mathfrak{A}}$ either $Y \cap X$ or $X - Y$ is finite.

If $D \in S_{1}(L(\bar{\mathfrak{A}}))$ and $X = D(\bar{\mathfrak{A}})$ then X is strongly minimal in $\bar{\mathfrak{A}}$ if for any elementary extension B of $\bar{\mathfrak{A}}$, $D(B)$ is minimal in B. Let $\bar{\mathfrak{A}}_{0}$ and $\bar{\mathfrak{A}}_{1}$ be models of a complete theory T. Since up to isomorphism any two models of T have a common elementary extension, $D(\bar{\mathfrak{A}}_{0})$ is strongly minimal in $\bar{\mathfrak{A}}_{0}$ if and only if $D(\bar{\mathfrak{A}}_{1})$ is strongly minimal in $\bar{\mathfrak{A}}_{1}$. Thus, without ambiguity we define a formula $D \in S_{1}(L)$ to be strongly minimal in T if there is a model $\bar{\mathfrak{A}}$ of T such that $D(\bar{\mathfrak{A}})$ is strongly minimal in $\bar{\mathfrak{A}}$.

We will refer to the following theorem which is Theorem 5 in [1].

Theorem 0. If $\bar{\mathfrak{A}}$ is a model of an \mathfrak{K}_{1}-categorical theory T then $\bar{\mathfrak{A}}$ is homogeneous.

Our first step in the proof of Morley's conjecture is to introduce a concept of the rank of a formula in a model of a theory. We will compare this notion with three other sorts of rank.

If $\bar{\mathfrak{A}}$ is an L-structure and A is an element of $S_{1}(L(\bar{\mathfrak{A}}))$ then we defined A to be minimal in $\bar{\mathfrak{A}}$ if $A(\bar{\mathfrak{A}})$ is infinite and, for each formula $B \in S_{1}(L(\bar{\mathfrak{A}}))$, $(B \land A)(\bar{\mathfrak{A}})$ or $(\neg B \land A)(\bar{\mathfrak{A}})$ is finite. We will define a notion of rank of a formula in a model such that minimal formulas have rank one.

Well order the class X consisting of $\{-1\}$ and the direct product of the class of all ordinals with the positive integers by placing -1 first in the order and then following the natural lexicographic order. For each L-structure $\bar{\mathfrak{A}}$ define $f_{\bar{\mathfrak{A}}}: X \rightarrow 2^{S_{1}(L(\bar{\mathfrak{A}}))}$ by induction

$$f_{\bar{\mathfrak{A}}}(-1) = \{|A| S_{1}(L(\bar{\mathfrak{A}}))| A(\bar{\mathfrak{A}}) = \emptyset\}.$$

$A \in f_{\bar{\mathfrak{A}}}((\alpha, k))$ if and only if $A \not\in f(x)$ for any $x < (\alpha, k)$ and if for any set of $k + 1$ formulas B_{1}, \cdots, B_{k+1} from $S_{1}(L(\bar{\mathfrak{A}}))$ such that the sets $B_{i}(\bar{\mathfrak{A}})$ partition $A(\bar{\mathfrak{A}})$ there exists an $x < (\alpha, 1)$ with one of the $B_{i} \in f(x)$.
Let T be totally transcendental, \mathcal{A} a model of T, and $A \in S_1(L(\mathcal{A}))$. Call a formula A rankless if A is not in the range of $f_\mathcal{A}$. We claim there is no formula $A \in S_1(L(\mathcal{A}))$ such that A is rankless. For, if so, we can construct for each finite binary sequence σ a formula A_σ such that (1) A_σ is rankless and (2) if $\sigma' = \sigma \cup \langle dm \sigma, 0 \rangle$ and $\sigma'' = \sigma \cup \langle dm \sigma, 1 \rangle$ then $A_{\sigma'} = \neg A_{\sigma''}$. Let X be the set of constants from $|\mathcal{A}|$ which occur in any A_σ. Then X is countable but $S(X)$ is uncountable contrary to the hypothesis that T is totally transcendental.

Thus if \mathcal{A} is a model of a totally transcendental theory we may define for each $A \in S_1(L(\mathcal{A}))$ the rank of A in \mathcal{A} which we denote by $R_{\mathcal{A}}(A)$. $R_{\mathcal{A}}(A)$ is -1 if $A \in f_\mathcal{A}(-1)$. $R_{\mathcal{A}}(A)$ is $\langle \alpha, k \rangle$ if $A \in f_\mathcal{A}(\langle \alpha, k \rangle)$.

Notice that if $\mathcal{A} \subseteq \mathcal{B}$ and $A \in S_1(L(\mathcal{B}))$ then $R_{\mathcal{B}}(A) \leq R_{\mathcal{A}}(A)$. If \mathcal{A} is a saturated model and $\mathcal{B} \supseteq \mathcal{A}$ then $R_{\mathcal{B}}(A) = R_{\mathcal{A}}(A)$. If $A(\mathcal{A}) \subseteq B(\mathcal{A})$ then $R_{\mathcal{B}}(A) \leq R_{\mathcal{B}}(B)$. Finally if $R_{\mathcal{A}}(A) = \langle \alpha, k \rangle$ and $(\beta, m) < (\alpha, k)$ then there is a formula $B \in S_1(L(\mathcal{A}))$ such that $B(\mathcal{A}) \subseteq A(\mathcal{A})$ and $R_{\mathcal{B}}(B) = (\beta, k)$. Let \mathcal{A} be a structure with one binary relation R such that R is an equivalence relation and for each n there is a unique equivalence class with exactly n elements but there are no infinite equivalence classes in \mathcal{A}. Then $Th(\mathcal{A})$ is totally transcendental and $R_{\mathcal{A}}(v_0 = v_0) = (1, 1)$. But for each positive integer k there is an elementary extension \mathcal{B}_k of \mathcal{A} with $R_{\mathcal{B}_k}(v_0 = v_0) = (1, k)$ and there is an elementary extension \mathcal{B} with $R_{\mathcal{B}}(v_0 = v_0) = (2, 1)$. It is an immediate consequence of Theorem 2 that if \mathcal{A} is a model of a K_1-categorical theory T, $A \in S_1(L(\mathcal{A}))$, and $\mathcal{B} \supseteq \mathcal{A}$ then $R_{\mathcal{B}}(A) = R_{\mathcal{A}}(A)$. In fact this remark appears to be equivalent to Theorem 2.

In [4], Morley introduced for a countable first order theory T, $X \in \Pi_1T$, and $p \in S(X)$ the concept of the transcendental rank of p. In [2] Lachlan interprets this notion in terms of the rank of a formula A in $S_1(L(\mathcal{A}))$ as follows

$$r_\mathcal{A}(A) = \begin{cases} -1 & \text{if } A(\mathcal{A}) = \emptyset, \\ \sup \{ |A| \mid (3p) p \in U_A \land p \in Tr^\mathcal{A}(\mathcal{A}) \} & \text{otherwise.} \end{cases}$$

We relate $r_\mathcal{A}(A)$ to $R_{\mathcal{A}}(A)$ in the following theorem.

Theorem 1. Let \mathcal{A} be a model of a totally transcendental theory T and $A \in S_1(L(\mathcal{A}))$.

(i) $r_\mathcal{A}(A) \geq \sup \{ |A| \mid (3k) \exists \mathcal{B} \geq \mathcal{A} \land R_{\mathcal{B}}(A) = (\alpha, k) \}.$

(ii) For some \mathcal{B} an elementary extension of \mathcal{A} and some integer k, $R_{\mathcal{B}}(A) = (r_{\mathcal{A}}(A), k)$.

(iii) $r_\mathcal{A}(A) = \sup \{ |A| \mid (3k) \exists \mathcal{B} \geq \mathcal{A} \land R_{\mathcal{B}}(A) = (\alpha, k) \}.$

(iv) For some elementary extension \mathcal{B} of \mathcal{A} and some positive integer k, $R_{\mathcal{B}}(A) = \sup \{ R_{\mathcal{B}}(A) \mid (\mathcal{B}) = (r_{\mathcal{A}}(A), k) \}.$
(v) If \(R(\varphi) = (\alpha, k) \) there is an elementary extension \(\mathcal{B} \) of \(\mathfrak{A} \) and a formula \(B \in S_1(L(\mathcal{B})) \) such that \(B(\mathcal{B}) \subseteq A(\mathfrak{A}) \) and \(R(\mathcal{B}) = (\alpha, 1) = \sup \{ R_C(\mathcal{B}) \mid C \supseteq \mathcal{B} \} \).

To prove this theorem we need the following extension of a lemma in [2].

Lemma 1. Let \(T \) be a first order theory, \(\mathfrak{A} \) a model of \(T \), \(A \in S_1(L(\mathfrak{A})) \) and suppose \(R(\varphi) = \alpha \) then for each \(\beta < \alpha \) there exists an elementary extension \(\mathcal{B} \) of \(\mathfrak{A} \) such that \(i^{-1} \{ U_A \cap Tr^\beta(\mathcal{B}) \} \) is infinite.

Proof. If the lemma is false there exists a model of \(T \) and a formula \(A \in S_1(L(\mathfrak{A})) \) with \(R(\varphi) = \alpha \) and some \(\beta < \alpha \) such that, for each \(\mathcal{B} \supseteq \mathfrak{A} \), \(i^{-1} \{ U_A \cap Tr^\beta(\mathcal{B}) \} \) is finite. Suppose \(q \in Tr^\beta(\mathcal{B}) \). Then for each \(C \supseteq \mathcal{B} \), \(i^{-1} (q) \cap S(\mathcal{C}) \) is a set of isolated points in \(S(\mathcal{C}) \). But then if \(A \in q \), \(i^{-1} (q) \cap S(\mathcal{C}) \) is a set of isolated points in \(S(\mathcal{C}) \) since \(i^{-1} (U_A) = i^{-1} (U_A) \) and \(i^{-1} (U_A) \cap Tr^\beta(\mathcal{B}) \) is finite. Thus \(q \in Tr^\beta(\mathcal{B}) \) but \(q \) was chosen in \(Tr^\beta(\mathcal{B}) \) so this is impossible. Hence \(i^{-1} \{ U_A \cap Tr^\beta(\mathcal{B}) \} \) is empty and by induction for each \(\gamma \geq \beta + 1 \), for each \(C \supseteq \mathfrak{A} \), \(Tr^\gamma(\mathcal{C}) \cap i^{-1} \{ U_A \} \) is empty. So \(R(\varphi) \neq \alpha \).

Proof of Theorem 1. (i) The proof proceeds by induction on \(R(\varphi) \). If \(R(\varphi) = -1 \) then \(F_\varphi \sim \exists \varphi \exists \varphi \) and so the theorem holds. Suppose, as the induction hypothesis, the theorem holds for a formula \(A \) if \(R(\varphi) = \gamma \) is less than \(\alpha \). We first prove that, for each \(\mathcal{B} \supseteq \mathfrak{A} \), \(R(\varphi) = \beta + 1 \). Then suppose \(q \in Tr^\beta(\mathcal{B}) \). Then there exists a sequence of formulas \((A_i) \) each \(A_i \in S(\mathcal{L}(\mathfrak{J})) \) such that \(A_i \subseteq A_{i+1} \) and \(A_i \wedge A_j \) is \(\varnothing \) if \(i \neq j \). Then by induction, for each \(\gamma \geq \beta + 1 \), \(R(\varphi) = \gamma \) so there exists \(p_i \in U_A \cap S(\mathcal{B}) \). Then for each \(i \), since \(S(\mathcal{B}) \) is compact and \(U_A \) is closed, there exists \(p_i \), an accumulation point of the \(p_i \), such that \(p_i \in U_A \cap S(\mathcal{B}) \).

Case 1. \(\alpha \) is a successor ordinal, say \(\alpha = \lambda + 1 \). Since \(R(\varphi) = (\lambda + 1, 1) \) there exists a sequence of formulas \((A_i) \) each \(A_i \subseteq A_{i+1} \), such that \(A_i \subseteq A_{i+1} \), \(A_i \wedge A_{i+1} \) is \(\varnothing \) if \(i \neq j \) and \(R(\varphi) = (\lambda, 1) \). Then by induction, for each \(\gamma \geq \beta + 1 \), \(R(\varphi) = \gamma \) so there exists \(p_i \in U_A \cap S(\mathcal{B}) \). Then for each \(i \), since \(S(\mathcal{B}) \) is compact and \(U_A \) is closed, there exists \(p_i \), an accumulation point of the \(p_i \), such that \(p_i \in U_A \cap S(\mathcal{B}) \).

Case 2. \(\alpha \) is a limit ordinal. \(\alpha \) has cofinality \(\omega \) since \(\alpha < \omega \) [2]. Then there exists a sequence of ordinals \((\alpha_i) \) each \(\alpha_i \subseteq \omega \) and a sequence of formulas \((A_i) \) each \(A_i \subseteq A_{i+1} \), such that \(A_i \subseteq A_{i+1} \), \(A_i \wedge A_{i+1} \) is \(\varnothing \) if \(i \neq j \) and \(R(\varphi) = (\alpha, 1) \) for each \(i \), and the \(\alpha_i \) increase monotonically to \(\alpha \). Then by induction, \(R(\varphi) \geq \alpha \) so there exists a type \(p_i \in U_A \cap Tr^\alpha(\mathcal{B}) \). Since \(U_A \) is closed and \(S(\mathcal{B}) \) is compact there exists \(p_i \), an accumulation point of the \(p_i \) for each \(i \). But \(p \notin Tr^\gamma(\mathcal{B}) \) for any \(\gamma < \alpha \) so \(p \in U_A \cap S(\mathcal{B}) \).

Since \(U_A \) is closed there exists \(p \), an accumulation point of the \(p_i \) and
\(p \in U_A \cap S^{a+1}(\mathfrak{B}_1) \) since each \(p_i \in U_A \cap \text{Tr}^a(\mathfrak{B}_1) \). Hence \(i^{*\mathfrak{B}_1}(p) \in U_A \cap S^{a+1}(\mathfrak{B}_1) \). But then \(r_{\mathfrak{B}_1}(A) \geq a + 1 \) so (i) is proved.

(ii) Now we show that there exists \(\mathfrak{B} \geq \mathfrak{A} \) such that for some \(k \), \(R_{\mathfrak{A}}(A) = (\alpha, k) \). By Lemma 1 since \(r_{\mathfrak{A}}(A) = \alpha \), for each \(\gamma < \alpha \) there exists an elementary extension \(\mathfrak{A}_\gamma \) of \(\mathfrak{A} \) such that \(i^{*\mathfrak{A}_\gamma}(U_A) \cap \text{Tr}^\gamma(\mathfrak{A}_\gamma) \) is infinite. Hence there exists a sequence of formulas \((A_i^\gamma)_{i<\omega} \) such that \(A_i^\gamma \in S_1(L(\mathfrak{A}_\gamma)) \), \(A_i^\gamma \subseteq A(\mathfrak{A}_\gamma) \), and \(r_{\mathfrak{A}_\gamma}(A_i^\gamma) = \gamma \). By induction there exists \(\mathfrak{A}_\alpha \) such that for each \(\gamma \) and some \(k \), \(iR_{\mathfrak{A}_\gamma,i}(A_i^\gamma) = (\gamma, k) \). Without loss of generality we may assume \((|\mathfrak{A}_\gamma, i| - |\mathfrak{A}_\delta, i|) \cap (|\mathfrak{A}_\delta, j| - |\mathfrak{A}_\delta|) = \emptyset \) if \((\gamma, i) \neq (\delta, j)\). There exists a model \(\mathcal{C} \) such that for each \((\gamma, i), \mathcal{C} \geq \mathfrak{A}_\gamma \), by the compactness theorem. Then for each \(\gamma < \omega \) there exists a \(\delta \) such that \(R_{\mathfrak{A}}(A^\gamma_\delta) \geq (\gamma, k) \). So \(R_{\mathfrak{A}}(A) \geq (\alpha, 1) \). Since each \(\mathfrak{B} \geq \mathfrak{A} \), \(R_{\mathfrak{B}}(A) \leq (\alpha + 1, 1) \) by (i), for some \(k \), \(R_{\mathfrak{C}}(A) = (\alpha, k) \) and \(\mathcal{C} \) is the required model.

(iii) This follows immediately from (i) and (ii).

(iv) We must find \(\mathfrak{B} \geq \mathfrak{A} \) and a positive integer \(k \), such that \(R_{\mathfrak{B}}(A) = (r_{\mathfrak{A}}(A), k) \). By (ii) choose \(\mathfrak{B}_0 \geq \mathfrak{A} \) such that, for some \(k \), \(R_{\mathfrak{B}_0}(A) = (r_{\mathfrak{B}}(A), k) \). Then applying (i) for each \(\mathfrak{C} \geq \mathfrak{B}_0 \) there is an integer \(k \) such that \(R_{\mathfrak{C}}(A) = (r_{\mathfrak{C}}(A), k) \). It suffices to show that the set of such \(k \) is bounded. If not, there exists an increasing sequence of positive natural numbers \(m_n \) and a sequence of models \(\mathfrak{B}_n \) such that \(\mathfrak{B}_n \geq \mathfrak{B}_0 \) and \(R_{\mathfrak{B}_n}(A) = (r_{\mathfrak{B}_n}(A), n) \). We may assume that, if \(m \neq n \), \((|\mathfrak{B}_n| - |\mathfrak{B}_m|) \cap (|\mathfrak{B}_n| - |\mathfrak{B}_0|) = \emptyset \). By the compactness theorem there exists a model \(\mathcal{D} \) which elementarily extends each \(\mathfrak{B}_n \). But then \(R_{\mathcal{D}}(A) \geq (r_{\mathcal{D}}(A) + 1, 1) \) contrary to (i). Hence there exists a maximum \(k \) and an elementary extension \(\mathfrak{B} \) of \(\mathfrak{B}_0 \) such that \(R_{\mathfrak{B}}(A) = (r_{\mathfrak{B}}(A), k) \).

(v) We will construct a sequence of models \(\mathfrak{B}_i \) and formulas \(B_i \in S_1(L(\mathfrak{B}_{i-1})) \) such that \(B_{i+1}(\mathfrak{B}_i) \subseteq B_i(\mathfrak{B}_i) \), \(R_{\mathfrak{B}_i}(B_{i+1}) = (\alpha, 1) \), \(R_{\mathfrak{B}_i}(B_{i+1}) = \sup \{ R_{\mathcal{C}}(B_{i+1}) \mid \mathfrak{C} \geq \mathfrak{B}_i \} \) and if \(R_{\mathfrak{B}_i}(B_i) > (\alpha, 1) \) then \(R_{\mathfrak{B}_{i+1}}(B_{i+1}) < R_{\mathfrak{B}_i}(B_i) \). Since there is no infinite descending sequence in a well ordered set, for some \(i \), \(R_{\mathfrak{B}_i}(B_i) = (\alpha, 1) \) and letting \(\mathfrak{B} = \mathfrak{B}_i \) and \(B = B_i \) proves (v). Let \(\mathfrak{B}_0 \geq \mathfrak{A} \) and \(B_0 = A \). Suppose \(\mathfrak{B}_i \) and \(B_i \) have been chosen for \(i < n \). Let \(B_n \in S_1(L(\mathfrak{B}_{n-1})) \) such that \(B_n(\mathfrak{B}_{n-1}) \subseteq B_{n-1}(\mathfrak{B}_{n-1}) \) and \(R_{\mathfrak{B}_{n-1}}(B_{n-1}) = (\alpha, 1) \). Then by (iv) choose \(\mathfrak{B}_n \geq \mathfrak{B}_{n-1} \) such that \(R_{\mathfrak{B}_n}(B_n) = \sup \{ R_{\mathfrak{C}}(B_n) \mid \mathfrak{C} \geq \mathfrak{B}_n \} \). If \(R_{\mathfrak{B}_n}(B_n) > (\alpha, 1) \) then both \(R_{\mathfrak{B}_n}(B_n \wedge B_{n+1}) \) and \(R_{\mathfrak{B}_n}(B_n \wedge B_{n+1}) \) are greater than or equal to \((\alpha, 1) \). Hence, if \(R_{\mathfrak{B}_{n+1}}(B_{n+1}) = R_{\mathfrak{B}_n}(B_n), R_{\mathfrak{B}_{n+1}}(B_n) > R_{\mathfrak{B}_n}(B_n) \) contrary to the choice of \(\mathfrak{B}_n \).
At the suggestion of the referee we include the following comparison of the rank defined here with that defined by Shelah in his paper on the uniqueness of prime models [6].

Shelah chooses a sufficiently saturated model \mathcal{M} of T (for T totally transcendental a countable saturated model suffices) and defines for $A \in S_1(L(\mathcal{M}))$,

(A) $\rho(A) = -1$ iff $\mathcal{M} \not\models \exists \nu_0 A$.

(B) $\rho(A) = \alpha$ iff

(1) $\mathcal{M} \models \exists \nu_0 A$,

(2) for no $\beta < \alpha$, $\rho(A) = \beta$,

(3) for no $B \in S_1(L(\mathcal{M}))$ do both $A \land B$ and $A \land \lnot B$ satisfy (1) and (2).

(C) $\rho(A) = \infty$ if $\rho(A)$ is not defined by (A) and (B). ∞ is assumed greater than each ordinal.

Shelah proves that if T is totally transcendental then $\rho(A) < \infty$. The following theorem indicates the relation between $R_{\mathfrak{d}}(A)$ and $\rho(A)$ if $Th(\mathfrak{f})$ is totally transcendental.

Theorem 1'. Let T be a totally transcendental theory and \mathfrak{f} a saturated model of T then, for $A \in S_1(L(\mathfrak{f}))$, $R_{\mathfrak{d}}(A) = (\alpha, k)$ if and only if $\rho(A) = \omega \cdot \alpha + m$ where $2^m \leq k < 2^{m+1}$. $R_{\mathfrak{d}}(A) = 1$ if and only if $\rho(A) = -1$.

Proof. Since \mathfrak{f} is a saturated model of T we may take \mathfrak{f} for \mathcal{M} in the definition of $\rho(A)$. The result is evident if $R_{\mathfrak{d}}(A) = -1$. For the rest we induct on $R_{\mathfrak{d}}(A)$. It is easy to verify that $R_{\mathfrak{d}}(A) = (0, 1)$ if and only if $\rho(A) = 0$.

Now suppose the conclusion holds for each $A \in S_1(L(\mathfrak{f}))$ with $R_{\mathfrak{d}}(A) < (\alpha, k)$ and choose an $A \in S_1(L(\mathfrak{f}))$ with $R_{\mathfrak{d}}(A) = (\alpha, k)$.

Case 1. Let $k = 1$. To show $\rho(A) \geq \omega \cdot \alpha$ it suffices by [6, Theorem 1.1 A, B], as T is totally transcendental, to show there is an increasing sequence of ordinals $\langle \gamma_i \rangle_{i < \omega}$ tending to $\omega \cdot \alpha$ and a collection of formulas $B_i \in S_1(L(\mathfrak{f}))$ such $\rho(A \land B_i) \geq \gamma_i$ and $\rho(A \land \lnot B_i) \geq \gamma_i$. Let $\langle \delta_i, k_i \rangle$ be an increasing sequence tending to $\langle \omega, 1 \rangle$. For each i, choose $B_i, B'_i \in S_1(L(\mathfrak{f}))$ such that $B_i(\mathfrak{f}) \subseteq A(\mathfrak{f}), B'_i(\mathfrak{f}) \subseteq A(\mathfrak{f}), B_i(\mathfrak{f}) \cap B'_i(\mathfrak{f}) = \emptyset$ and $R_{\mathfrak{d}}(B_i) = R_{\mathfrak{d}}(B'_i) = (\delta_i, k_i)$. Then by induction $\rho(A_i \land B_i) = \omega \cdot \delta_i + m_i$ and $\rho(A \land \lnot B_i) \geq \omega \cdot \delta_i + m_i$ where $2^{m_i} \leq k_i < 2^{m_i+1}$. Let $\gamma_i = \omega \cdot \delta_i + m_i$; we have an appropriate sequence.

But for each formula $B \in S_1(L(\mathfrak{f}))$ either $R_{\mathfrak{d}}(A \land B) < (\alpha, 1)$ or $R_{\mathfrak{d}}(A \land \lnot B) < (\alpha, 1)$. Say $R_{\mathfrak{d}}(A \land B) = (\beta, k) < (\alpha, 1)$. Then by induction $\rho(A \land B) = \omega \cdot \beta + m < \omega \cdot \alpha$ where $2^m \leq k < 2^{m+1}$. Hence $\rho(A) \leq \omega \cdot \alpha$ so $\rho(A) = \omega \cdot \alpha$.

Case 2. Suppose $k > 1$, and $2^m \leq k < 2^{m+1}$. Let $B \in S_1(L(\mathfrak{f}))$, then either $R_{\mathfrak{d}}(A \land B) < (\alpha, 2^m)$ or $R_{\mathfrak{d}}(A \land \lnot B) < (\alpha, 2^m)$ since $R_{\mathfrak{d}}(A \land B) = (\alpha, 2^m)$ and $R_{\mathfrak{d}}(A \land \lnot B) = (\alpha, 2^m)$ implies $R_{\mathfrak{d}}(A) > (\alpha, 2^{m+1}) > (\alpha, k)$. Hence by induction $\rho(A \land B) < \omega \cdot \alpha + m$ or $\rho(A \land \lnot B) < \omega \cdot \alpha + m$. Thus $\rho(A) < \omega \cdot \alpha + m$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
There exist formulas $B_1, \ldots, B_k \in S_1(L(\bar{q}))$ such that the $B_i(L)$ partition $A(L)$ and each $R_\bar{q}(B_i) = (\alpha, 1)$. Let $B = \bigvee_{i=1}^{2m-1} B_i$. Then by induction $\rho(A \land B) = \omega \cdot \alpha + (m - 1)$ and $\rho(A \land \sim B) \geq \omega \cdot \alpha + (m - 1)$ so by [6, Theorem 1.1B] $\rho(A) \geq \omega \cdot \alpha + m$. Thus $\rho(A) = \omega \cdot \alpha + m$.

Corollary to Main Theorem. If T is \aleph_1-categorical, $\bar{q} \models T$ and $A \in S_1(L(\bar{q}))$, $\rho(A) < \omega \cdot \omega$.

Proof. This is immediate from Theorem 1' and Theorem 3.

We now restrict our attention to \aleph_1-categorical theories. In particular, we will deal with an \aleph_1-categorical theory T with a specified strongly minimal formula D such that, for each model \bar{q} of T, $D(\bar{q}) \cap \text{cl}(\emptyset)$ is infinite.

We want to assign to each formula $B \in S_1(L(\bar{q}))$ a formula B^* which "witnesses" the rank of B. In order to do this we consider formulas $A \in S_1(L)$ for each l. To each A and for each n we assign a class $\Gamma^{(n)}_A$ of possible witnesses. Each $\Gamma_A^{(n)}$ is a set of l-ary formulas such that there is a positive integer k with $R_\bar{q}(A(a_1, \ldots, a_l)) = (n, k)$ if and only if, for some $A^* \in \Gamma^{(n)}_A$, $(\bar{q} \models A(a_1, \ldots, a_l))$.

The simplest cases are as follows. If $A(L)$ is finite, A^* tells how many elements are in $A(L)$. If A is strongly minimal A^* expresses A as a "uniform union of finite sets" over the fixed strongly minimal set D. In the following definition A^* will be in $\Phi^{(n)}_A$ just when $R_\bar{q}(A) = (n, 1)$. The definition of $\Theta^{(n)}_A$ arises from the intuition that $R_\bar{q}(A) = (n, k)$ when $A(L)$ is a union of finitely many definable sets with rank $(n, 1)$.

For each natural number l, for each $A \in S_{l+1}(L)$ and to -1 and each natural number n assign a set of formulas as follows

$$\Gamma^{(-1)}_A = \{ \exists v_0 A \},$$

$$\Phi^{(0)}_A = \{ \exists v_0 A \land \exists^k v_0 A \mid 0 < k < \omega \},$$

$$\Phi^{(n)}_A = \{ \exists v_{l+1}, \ldots, \exists v_k (\forall v_0 (A \leftrightarrow \exists v_{k+1} (C \land D(v_{k+1})) \land C^*))$$

$$\land (\forall v_0 (A \rightarrow \exists^p v_{k+1} (C \land D(v_{k+1}))))$$

$$\land (\exists^p v_{k+1} \exists^q v_0 (D(v_{k+1}) \land C \land (\sim A \lor C^*)))) \mid 0 < p < \omega, l \leq k < \omega, C \in S_{k+2}(L), \text{ and } C^* \in \Gamma^{(n-1)}_C,$$

$$\Theta^{(n)}_A = \{ \exists v_{l+1}, \ldots, \exists v_k (\forall v_0 (A \leftrightarrow (A_1 \lor \cdots \lor A_s)) \land A^*_1 \land \cdots \land A^*_s) \mid l \leq k < \omega, A_i \in S_{k+2}(L), s < \omega \text{ each } A^*_i \in \bigcup_{r < n} \Gamma^{(r)}_A \cup \Phi^{(n)}_A$$

$$\land \text{ and some } A^*_i \in \Phi^{(n)}_A,\},$$

$$\Gamma^{(n)}_A = \Phi^{(n)}_A \cup \Theta^{(n)}_A.$$
Note that if $A \in S_{I+1}(L)$ and $A^* \in \Gamma_A^{(n)}$ for some n, then A^* has free variables v_1, \ldots, v_l. Thus when we write $A^*(a_1, \ldots, a_l)$ we mean the result of substituting a_i for v_i for $i = 1, 2, \ldots, l$. We abbreviate $A_{v_1, \ldots, v_l}(a_1, \ldots, a_l)$ by $A(a_1, \ldots, a_l)$. Thus $A(a_1, \ldots, a_l) \in S_1(L|\{a_1, \ldots, a_l\})$.

Theorem 2. Let T be an κ_1-categorical theory and D a strongly minimal formula in T such that, in each model B of T, $D(B) \cap cl(\emptyset)$ is infinite. Let $\bar{\mathfrak{A}}$ be a model of T, $m \in \{-1\} \cup \omega$, $A \in S_{I+1}(L)$, and $a_1, \ldots, a_l \in |\bar{\mathfrak{A}}|$. The following two propositions are equivalent.

(i) There exists a formula $A^* \in \Gamma_A^{(n)}$ such that $\bar{\mathfrak{A}} \models A^*(a_1, \ldots, a_l)$.

(ii) For some $k R_{\mathfrak{A}}(A(v_0, a_1, \ldots, a_l)) = (m, k)$ if $m \geq 0$. If $m = -1$, $R_{\mathfrak{A}}(A(v_0, a_1, \ldots, a_l)) = -1$.

Notice that there is no loss of generality in this theorem because of our assumption that T has a strongly minimal formula D and that, for each model \mathfrak{B} of T, $D(\mathfrak{B}) \cap cl(\emptyset)$ is infinite. For, let T be an arbitrary κ_1-categorical theory in a first order language L. Then there is a principal extension T' of T with a strongly minimal formula D'. Let $\bar{\mathfrak{A}}$ be a prime model of T'. Let X be an infinite subset of $D'(\bar{\mathfrak{A}})$. Then $Th(\bar{\mathfrak{A}}, X) = T''$ is a theory of the specified kind. Suppose \mathfrak{B} is a model of T'', $A \in S_{I+1}(L)$, $A^* \in \Gamma_A^{(m)}$ for some m, and $a_1, \ldots, a_l \in |\mathfrak{B}|$. Then $\mathfrak{B} \models A^*(a_1, \ldots, a_l)$ if and only if $\mathfrak{B} \models A^*(a_1, \ldots, a_l)$. Moreover, $R_{\mathfrak{B}}(A(v_0, a_1, \ldots, a_l)) = R_{\mathfrak{A}}(A(v_0, a_1, \ldots, a_l))$. Thus it suffices to prove the theorem for T''.

Proof of theorem. The proof proceeds by induction on m. If $m = -1$, $\bar{\mathfrak{A}} \models A^*(a_1, \ldots, a_l)$ for some $A^* \in \Gamma_A^{(-1)}$ if and only if $A(v_0, a_1, \ldots, a_l)(\bar{\mathfrak{A}}) = \emptyset$ which is equivalent to $R_{\mathfrak{A}}(A(v_0, a_1, \ldots, a_l)) = -1$. We assume the theorem is true for $m < n$ and prove (i) implies (ii) for $m = n$. Then we prove a lemma. Finally we assume the theorem holds for $m < n$ and prove (ii) implies (i) for $m = n$.

To prove (i) implies (ii) consider a formula $A \in S_{I+1}(L)$ and a formula $A^* \in \Gamma_A^{(n)}$ such that $\bar{\mathfrak{A}} \models A^*(a_1, \ldots, a_l)$ with $a_1, \ldots, a_l \in |\bar{\mathfrak{A}}|$. Notice first that it suffices to prove the case in which $A^* \in \Phi_A^{(n)}$. For, suppose that (i) implies (ii) has been shown for each integer l, each $A \in S_j(L)$ and each $A^* \in \Phi_A^{(n)}$ and that $A^* \in \Theta_A^{(n)}$. Then since $\bar{\mathfrak{A}} \models A^*(a_1, \ldots, a_l), A(v_0, a_1, \ldots, a_l)(\bar{\mathfrak{A}}) = \bigcup_{i=1}^k (A_i(v_0, a_1, \ldots, a_k)(\bar{\mathfrak{A}}))$ for some a_{l+1}, \ldots, a_k in $|\bar{\mathfrak{A}}|$ and some A_1, \ldots, A_k. Moreover, for each i, $\bar{\mathfrak{A}}$ satisfies $A^*(a_1, \ldots, a_k)$ and each $A^* \in \bigcup_{i=1}^{n-1} \Gamma_A^{(n-1)} \cup \Phi_A^{(n)}$. So for each i there exists $n_i \leq n$ and a k_i such that $R_{\mathfrak{A}}(A_i(v_0, a_1, \ldots, a_l)) = (n_i, k_i)$ and for some i there exists k such that $R_{\mathfrak{A}}(A_i(a_1, \ldots, a_l)) = (n, k)$, by induction and the assumption that the theorem holds for each $B^* \in \Phi_B^{(n)}$. But then $R_{\mathfrak{A}}(A(a_1, \ldots, a_l)) = (n, m)$ for some integer m. License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Thus to prove (i) implies (ii) when \(m = n \), let \(A \in S_{l+1}(L) \) and suppose
\[\bar{\theta} \models A^*(a_1, \ldots, a_l) \text{ where } A^* \in \Phi^*_A(n). \]
Letting \(A' = A(v_0, a_1, \ldots, a_l) \) we wish to prove that, for some \(q \), \(R_{\theta}(A') = (n, q) \). From the definition of \(\Phi^*_A(n) \) we see \(A^* \) has the form
\[
3v_{l+1}, \ldots, 3v_k \forall v_0(A \leftrightarrow 3v_{k+1}(C \land D(v_{k+1}) \land C^*)) \]
\[\land \left(\forall v_0(A \rightarrow 3^p v_{k+1}(C \land D(v_{k+1}))) \right) \]
\[\land 3^{p^p} v_{k+1}3v_C(D(v_{k+1}) \land C \land (\sim A \lor C^*)) \]
where \(p \) is a positive integer, \(l \leq k < \omega \), \(C \) is in \(S_{k+2}(L) \) and \(C^* \) is in \(\Gamma^+_C^{(n-1)} \).
Since \(\bar{\theta} \models A^*(a_1, \ldots, a_l) \) there exist \(a_{l+1}, \ldots, a_k \in |\bar{\theta}| \) such that, for all but \(p \) elements \(b \) of \(D(\bar{\theta}) \), \(\bar{\theta} \models C^*(a_1, \ldots, a_k, b) \). Thus, for any \(\bar{\theta}' \supseteq \bar{\theta} \) and \(d \in D(\bar{\theta}' \setminus D(\bar{\theta})) \), \(\bar{\theta}' \models C^*(a_1, \ldots, a_k, d) \).

By induction, for some \(s \), \(R_{\bar{\theta}'}(C^'_v v_{k+1}(d)) = (n-1, s) \) where \(C' = C(v_0, a_1, \ldots, a_k, v_{k+1}) \). Then \(R_{\bar{\theta}'}(A') \subseteq (n, s) \). For, if not there exist \(L \)-formulas \(B_1, \ldots, B_s \) where each \(B_i \) has free variables \(v_0, v_{k+2}, \ldots, v_m \) with the following properties. There exist constants \(a^i_{k+2}, \ldots, a^i_m \in |\bar{\theta}| \) such that if \(B_i = B_i(v_0, v_{k+2}, \ldots, v_m), \) \(B_i(\bar{\theta}) \subseteq A'(\bar{\theta}), \) \(B_i(\bar{\theta}) \cap B_j(\bar{\theta}) = \emptyset \) if \(i \neq j \), and \(R_{\bar{\theta}'}(B_i) > (n, 1) \). We will show that this condition implies for each elementary extension \(\bar{\theta}' \) of \(\bar{\theta} \), each \(d \in D(\bar{\theta}' \setminus D(\bar{\theta})) \), and each \(i \) that \(R_{\bar{\theta}'}(B_i \land C^v_{k+1}(d)) \geq (n-1, 1) \). This in turn implies \(R_{\bar{\theta}'}(C^'_v v_{k+1}(d)) > (n-1, s) \) which is a contradiction allowing us to conclude that \(R_{\bar{\theta}'}(A') \subseteq (n, s) \).

Suppose \(R_{\bar{\theta}'}(B_i) > (n, 1) \) and for some \(\bar{\theta}' \supseteq \bar{\theta} \) and some \(d \in D(\bar{\theta}' \setminus D(\bar{\theta})) \), \(R_{\bar{\theta}'}(B_i \land C^v_{k+1}(d)) < (n-1, 1) \). By induction there exists a formula \((B'_i \land C^*) \in \Gamma_{B_i \land C}^{(r)} \) for some \(r < n-1 \) such that \(\bar{\theta}' \models (B'_i \land C^*)(a_1, \ldots, a_{k'}, d, a^i_{k+2}, \ldots, a^i_m) \).
Since \(D \) is strongly minimal, there exists \(p_1 \in \omega \) which may be assumed larger than \(p \) such that, for all but \(p \) members of \(D(\bar{\theta}') \), \(\bar{\theta}' \models (B'_i \land C^*)(a_1, \ldots, a_{k'}, b, a^i_{k+2}, \ldots, a^i_m) \). Consider the formulas
\[
F = 3v_{k+1}(D(v_{k+1}) \land (B_i \land C) \land (B'_i \land C^*)) ,
\]
\[
G = (\forall v_0(F \leftrightarrow F)) \land (\forall v_0(F \rightarrow 3^{p^p} v_{k+1}(D(v_{k+1}) \land (B_i \land C)))) \land (3^{p^p} v_{k+1}3v_C(D(v_{k+1}) \land (B_i \land C) \land (\sim F \lor \sim (B_i \land C)^*))) ,
\]
\[
H = 3v_0F .
\]
If \(r = -1 \) let \(F^* = H \); otherwise let \(F^* = G \). Then \(F^* \in \Gamma^+_F \cup \Gamma^+_F^{+1} \) and
\(\bar{\theta} \models F^*(a_1, \ldots, a_{k'}, a^i_{k+2}, \ldots, a^i_m) \) so if \(F' \) is the formula \((v_0, a_1, \ldots, a_{k'}, a^i_{k+2}, \ldots, a^i_m) \) by induction there is an integer \(q \) such that \(R_{\bar{\theta}'}(F') = (r+1, q) < (n, 1) \). For each element \(c \in B_i'(\bar{\theta}') \) there exists an element \(b \) in \(D(\bar{\theta}') \) such that \(\bar{\theta}' \models A^*(c_1, \ldots, a_k, b) \) since \(B_i'(\bar{\theta}') \subseteq A'(\bar{\theta}') \) and \(\bar{\theta}' \models A^*(a_1, \ldots, a_k) \). Let

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Let \(b_1, \ldots, b_q \) be an enumeration of the elements \(b \in D(\mathfrak{g}) \) such that

\[\mathfrak{g} \models C^*(a_1, \ldots, a_k, b) \land \sim (B_i \land C^*)(a_1, \ldots, a_k, b, a_{k+2}, \ldots, a_i). \]

We know there are only finitely many such \(b \) from above. Then

\[R^*_\mathfrak{g}(B_i \land C^*_{v+1}(b)) \leq R^*_\mathfrak{g}(C^*_{v+1}(b)) = (n-1, u) \]

for some \(u < \omega \) by induction. But

\[\mathfrak{g} \models \forall \nu_0 \left(B_i' \leftrightarrow F' \lor \bigvee_{j=1}^q (B_i \land C^*_{v+1}(b)) \right). \]

So \(B_i'(\mathfrak{g}) \) is the union of a finite number of definable sets each with rank less than \((n, 1) \) and thus \(R^*_\mathfrak{g}(B_i') \leq (n, 1) \) contrary to assumption. Thus we conclude as outlined above \(R^*_\mathfrak{g}(A') \leq (n, s) \). Since \(\mathfrak{g} \models \forall \nu_0 \exists \nu_1^0 \nu_1^0(C', R^*_\mathfrak{g}(A') \geq (n, 1)) \)

Therefore there exists an \(l, 1 \leq l \leq s \), such that \(R^*_\mathfrak{g}(A') = (n, l) \). We have shown (i) implies (ii) when \(m = n \).

Lemma 2. Let \(\mathfrak{g} \models T, A \in S_{l+1}(L), a_1, \ldots, a_l \in |\mathfrak{g}|, A' = A(v_0, a_1, \ldots, a_l) \) and \(\alpha \leq \omega \). Suppose the theorem holds for each \(m < \alpha \) and that for each \(\mathfrak{g} \models \exists \nu_0 \nu_1^0 \nu_1^0(C', R^*_\mathfrak{g}(A') \leq (n, s) \)

there is some \(k \) such that \(R^*_\mathfrak{g}(A') = (\alpha, k) \), then there exists \(\alpha < \alpha \) and \(A* \in \Gamma_{\mathfrak{A}}(r+1) \) such that \(\mathfrak{g} \models A*(a_1, \ldots, a_l) \).

Proof. Adjoin a new unary predicate symbol \(q \) to \(L \) to form \(L' \) and a new constant symbol \(f \) to \(L' \) to form \(L'' \). Let \(\Delta \) be the set of \(L' \) sentences which are true in an \(L' \) structure \(\mathfrak{C} \) just if there is an elementary substructure \(\mathfrak{C}^* \) of the reduct of \(\mathfrak{C}' \) to \(L \) such that \(|\mathfrak{C}^*| = q(C') \). Let \(D^n \) be the \(L' \) sentence \(\exists \nu_0 \nu_1^0 \nu_1^0(D \land \sim q) \). Let \(\Gamma_1 \) be the set of sentences

\[\{ \text{elementary diagram of } \mathfrak{g} \cup \Delta \cup D^n \cup \{ \nu_0 \nu_1^0 \nu_1^0(q(a)) \ a \in |\mathfrak{g}| \}. \]

If \(k < \omega \) and \(F \in S_{k+2}(L) \) consider the following formulas.

Let \(m = l + k \).

Let \(F_1 \in S_{m+2}(L) \) be the formula

\[F(v_0, v_{l+1}, \ldots, v_{m}, v_{m+1}) \land A. \]

Let \(F_1^* \) be in \(S_{m+1}(L) \).

Let \(G(F, F_1^*) = \exists \nu_{m+1}^0(D(v_{m+1}) \land F_1 \land F_1^*) \).

Let \(G^*(F, F_1^*, p) \) be

\[(\forall \nu_0 (G(F, F_1^*) \leftrightarrow G(F, F_1^*))) \land (\forall \nu_0 (G(F, F_1^*) \rightarrow \exists \nu_0^1 \nu_0^1(D(v_{m+1}) \land F_1))) \land 3^p v_{m+1} \exists \nu_0 (D(v_{m+1}) \land (\sim G(F, F_1^*) \lor \sim F_1^*)) \]

Then if \(F_1^* \) is in \(\Gamma_{F_1^*}^{(s)} \), \(G^*(F, F_1^*, p) \) is in \(\Gamma_{G(F, F_1^*)}^{(s+1)} \). Let \(\Gamma_2 \) be the set of sentences
\[\Gamma_1 \cup \{ \forall \alpha(f) \land \sim q(f) \} \cup \left\{ \forall (G(F, F^*)_{\alpha}, a_1, \ldots, a_\nu, b_{l+1}, \ldots, b_m) \right. \\
\left. \land G^*(F, F^*, p)(a_1, \ldots, a_\nu, b_{l+1}, \ldots, b_m) \right\} \\
\text{for } k \in \omega \text{ let } F \in S_{k+2}(L), \\
F^*_1 \in \bigcup_{u < \alpha} \Gamma_{F_1}^{(u)} b_{l+1}, \ldots, b_m, \in |\bar{a}| \right\}. \\
\]

Now we show that \(\Gamma_2 \) is inconsistent by finding for each \(L^\alpha \) structure \(C^\alpha \) such that \(C^\alpha \models \Gamma_1 \), for each element \(f \in (A^\alpha \land \sim q)(C^\alpha) \) formulas \(F \) and \(F^*_1 \), an integer \(p \), and constants \(c_{l+1}, \ldots, c_m \) such that

\[C^\alpha \models G(F, F^*)_{\alpha}(f, q_1, \ldots, a_\nu, c_{l+1}, \ldots, c_m) \]
\[\land G^*(F, F^*, p)(a_1, \ldots, a_\nu, c_{l+1}, \ldots, c_m). \]

Let \(C^\alpha \models \Gamma^*_1 \) and \(|\bar{B}| = q(C^\alpha). \) Let \(C = C^\alpha | L. \) \(\bar{B} \) is an \(L \)-structure. Let \(C_1 \) be an \(L \)-structure prime over \(|\bar{a}| \cup \{ f \} \). Then \(D(C_1) = D(\bar{B}) \neq \varnothing. \) For, suppose \(D(C_1) \subseteq D(\bar{B}) \) and let \(\bar{B}_1 \) be prime over \(D(C_1). \) \((\bar{B}_1, C_1) \) exist by 4.3 of [7]. Then \(C_1 = \bar{B}_1 \) for if not \(\bar{B}_1 \subseteq C_1 \) while \(D(\bar{B}_1) = D(\bar{C}_1). \) But then \(\bar{C}_1 \) and \(C_1 \) are models of \(T \) which satisfy the hypothesis of the two cardinal theorem so \(T \) is not \(\aleph_1 \)-categorical. For, by the two cardinal theorem [5] there is a model \(\bar{\alpha} \) of \(T \) with \(\kappa(\bar{\alpha}) = \aleph_1 \) and \(\kappa(D(\bar{\alpha})) = \aleph_0. \) But there is certainly a model \(\bar{B} \) of \(T \) with \(\kappa(\bar{B}) = \aleph_1 \) and \(\kappa(D(\bar{B})) = \aleph_0. \) Thus there exists \(d \in D(\bar{C}_1) \land \sim D(\bar{B}). \)

Let \(C \in S_{k+2}(L) \) and \(c_1, \ldots, c_k \in |\bar{\alpha}| \) such that \(C(f, c_1, \ldots, c_k, v_{k+1}) \) generates the principal \(1 \)-type in \(Th(C, |\bar{a}| \cup \{ f \}) \) realized by \(d. \) Then \(C(f, c_1, \ldots, c_k, v_{k+1})(C) \) is finite. For if not, since \(D \) is strongly minimal and contains infinitely many algebraic points there exists an algebraic point \(b \in |\bar{\alpha}| \) such that \(C \models C(f, c_1, \ldots, c_k, b). \) Since \(b \) is algebraic there exists a formula \(B \in S_1(L) \) and an integer \(t \) such that \(C \models B(b) \land \exists v_0 B. \) But since \(C \models C(f, c_1, \ldots, c_k, b), \) \(C(f, c_1, \ldots, c_k, v_{k+1}) \) generates a principal type and \(C(f, c_1, \ldots, c_k, v_{k+1})(C) \) is infinite, \(B(C) \) is infinite. So for some \(q < \omega, \)

\[C \models C(f, c_1, \ldots, c_k, v_{k+1}) \land \exists v_0 B. \]

Let \(C_1 \) be the following member of \(S_{m+2}(L). \)

\[C_{v_1, \ldots, v_{k+1}}(v_{l+1}, \ldots, v_{m+1}) \land A \land \exists v_{m+1} C_{v_1, \ldots, v_{k+1}}(v_{l+1}, \ldots, v_{m+1}). \]

Let \(C_1' \) be obtained from \(C_1 \) by substituting \(a_1, \ldots, a_\nu \) for \(v_1, \ldots, v_\nu \) and \(c_1, \ldots, c_k \) for \(v_{l+1}, \ldots, v_m. \) For any \(b \in D(C) = D(\bar{B}), \) \(R_C(C_1'_{v_{m+1}}(b)) = R_C(C_1'_{v_{m+1}}(d)) \) since any such \(b \) realizes the same \(1 \)-type in
A. T IS FINITE FOR \(\mathfrak{K} \)-CATEGORICAL \(T \)

Since \(D(C) - D(\mathfrak{B}) \) is infinite and \(\bar{a}_1, \ldots, a_n, c_1, \ldots, c_k \) as \(d \) and \(C \) is homogeneous by Theorem 0. So for some \(u < a \) and some \(k, R_{\mathfrak{B}}(C_1^{u+1}(d)) = (u, k) \). Thus by hypothesis, there exists a formula \(C^* \in \Gamma(u) \) such that \(C \models C^*(a_1, \ldots, a_n, c_1, \ldots, c_k, d) \). Let \(p \) be the maximum of \(q \) and the cardinality of \(\sim C^*(a_1, \ldots, a_n, c_1, \ldots, c_k) \) which is a finite subset of \(D(C^*) \). Then

\[
C^* \models A'(\bar{a}) \land q(\bar{a}) \land G(C, C^*(\bar{a})) \land G^*(C, C^*, p)(a_1, \ldots, a_n, c_1, \ldots, c_k)
\]

so \(C^* \) does not model \(\Gamma_2 \) but \(C^* \) was an arbitrary model of \(\Gamma_1 \), so \(\Gamma_2 \) is inconsistent. By the compactness theorem, there exists \(k \in \omega, F_1, \ldots, F_s \) in \(S_{k+2}(L) \) and \(F_1^* \in V \) for some \(t < a \) such that

\[
\Gamma_1 \models \left(\forall v_0 \left(A'(v_0) \land q(v_0) \rightarrow \bigvee_{i=1}^{s} G(F_i, F_1^*)(a_1, \ldots, a_n, c_1, \ldots, c_k) \right) \right)
\]

\[
\land \left(\bigwedge_{i=1}^{s} G^*(F_i, F_1^*, p_i)(a_1, \ldots, a_n, c_1, \ldots, c_k) \right).
\]

\(c_1, \ldots, c_k \) list the constants occurring in some \(F_i \) and are assumed to occur in each \(F_i \) for notational convenience.

Let \(B' = \bigvee_{i=1}^{s} G(F_i, F_1^*)(v_0, a_1, \ldots, a_n, c_1, \ldots, c_k) \). If \((A' \land \sim B')(\bar{a}) \) is infinite then there are models of \(T \) of arbitrarily large cardinality with \((A' \land \sim B')(\bar{a}) \neq \emptyset \). Thus there is a model \(\mathfrak{C} \) of \(\Gamma_1 \) with \((A' \land \sim B')(\mathfrak{C}) \neq \emptyset \). But this is impossible. Let \(H \) be

\[
\forall v_0 \left(A' \leftrightarrow \left(\bigvee_{i=1}^{s} G(F_i, F_1^*)(a_1, \ldots, a_n, c_1, \ldots, c_k) \right) \lor (A' \land \sim B) \right)
\]

\[
\land \left(\bigwedge_{i=1}^{s} G^*(F_i, F_1^*, p_i) \right) \land \left(\exists v_0 \left(A \land \left(\bigvee_{i=1}^{s} G(F_i, F_1^*) \right) \right) \right).
\]

Then \(\bar{a}, H \) so

\[
\bar{a} \models 3v_l, \ldots, 3 v_{l+k} c_1, \ldots, c_k (v_l, \ldots, v_{l+k})
\]

and

\[
\exists v_l \ldots 3v_{l+k} H c_1, \ldots, c_k (v_l, \ldots, v_{l+k}) \in \Gamma(u+1)
\]

where \(u = \max (u_i) < a \).

We return to the proof of Theorem 2. The induction hypothesis asserts that (i) is equivalent to (ii) if \(m < n \). We have already proved (i) implies (ii) if \(m = n \).
and now we wish to show (ii) implies (i) if \(m = n \). Suppose \(A \in S_{\lambda+1}(L), a_1, \ldots, a_\lambda \in |A| \), \(A' = A(a_1, \ldots, a_\lambda) \) and, for some \(k \), \(R_\lambda(A') = (n, k) \). The definition of \(\mathcal{G}_\lambda^{(n)} \) allows us to assume that \(k = 1 \). We will find a formula \(A* \in \Gamma_\lambda^{(n)} \) such that \(\bar{\alpha} \ni A^*(a_1, \ldots, a_\lambda) \).

By Theorem 1 (v) there is an elementary extension of \(\bar{B} \) of \(\bar{\alpha} \) and a formula \(B' \in S_1(L(\bar{B})) \) such that \(B'(\bar{B}) \subseteq A'(\bar{B}) \) and \(R_\lambda(B') = (n, 1) \). Now \(B' \) and \(\bar{B} \) satisfy the hypothesis of Lemma 2 so there exists \(B* \in \Gamma_\lambda^{(k+1)} \) for some \(k < n \) such that \(\bar{\alpha} \ni B^*(b_1, \ldots, b_s) \). If \(k < n - 1 \) by the induction hypothesis \(R_\lambda(B') < (n, 1) \) so \(k = n - 1 \). \(\bar{\alpha} \ni B^*(b_1, \ldots, b_s) \land \forall \nu_0(B(b_1, \ldots, b_s) \rightarrow A') \) and \(\bar{B} \) is an elementary extension of \(\bar{\alpha} \) so for some \(c_1, \ldots, c_s \in |\bar{\alpha}|, \bar{\alpha} \ni B^*(c_1, \ldots, c_s) \land \forall \nu_0(B(c_1, \ldots, c_s) \rightarrow A') \). Since \(B* \in \Gamma_\lambda^{(n)} \), we have proved (ii) implies (i) for \(m = n \), for some \(l \), \(R_\lambda(B(c_1, \ldots, c_s)) = (n, l) \). \(l \) must equal 1 since \(B(c_1, \ldots, c_s)(\bar{\alpha}) \subseteq A'(\bar{\alpha}) \) and \(R_\lambda(A') = (n, 1) \). If \(C' = C(\nu_0, a_1, \ldots, a_\mu, c_1, \ldots, c_s) = A' \land B(\nu_0, c_1, \ldots, c_s) \) then \(R_\lambda(C') < (n, 1) \). So by induction there exists \(C* \in \bigcup_{j=1}^{n-1} \Gamma_\lambda^{(j)} \) such that \(\bar{\alpha} \ni C^*(c_1, \ldots, a_\mu, c_1, \ldots, c_s) \). Hence letting

\[
A^* = \exists \nu_{i+1}, \ldots, \exists \nu_{i+s}((\forall \nu_0(A \rightarrow B(\nu_0, \nu_{i+1}, \ldots, \nu_{i+s}) \lor C)) \land B^* \land C*).
\]

\(A^* \) is in \(\Gamma_\lambda^{(n)} \) and \(\bar{\alpha} \ni A^*(a_1, \ldots, a_\lambda) \) proving the theorem.

Recall that \(\alpha_T \) is defined to be the least ordinal such that, for all \(\bar{\alpha} \in \mathfrak{N}(T) \) and \(\beta > \alpha_T \), \(S_\beta^{(\alpha_\lambda)}(\bar{\alpha}) = S_\beta(\bar{\alpha}) \). In [4] Morley proved \(\alpha_T \) exists and is less than \((2^{\aleph_0})^+ \) for every complete theory. In [2] Lachlan shows that \(\alpha_T \leq \omega_1 \) for each complete theory. We apply Theorem 2 to prove the following conjecture of Morley.

Theorem 3. If \(T \) is \(\kappa_1 \)-categorical then \(\alpha_T \) is finite.

Proof. If for some \(\bar{\alpha} \) and some \(\beta > \omega \) there exists \(p \in S_\beta^{(\bar{\alpha})} \), then since \(T \) is totally transcendental for some \(\gamma \geq \beta \), \(p \in T_{\gamma}^{(\bar{\alpha})} \) and by Lemma 1 there exists \(\bar{B} \geq (\bar{\alpha}, q \in T_{\gamma}^{(\bar{\alpha})} \cap r_\lambda^{-1}(p) \) and there is a formula \(A' = A(\nu_0, a_1, \ldots, a_\lambda) \) in \(S_1(L(\bar{B})) \) with \(R_\lambda(A') = \omega \). By Theorem 1, there exists \(\bar{C} \geq \bar{B} \) and an integer \(k \) such that, for every elementary extension \(\bar{C}_1 \) of \(\bar{C} \), \(R_{\bar{C}_1}(A) = (\omega, k) \). Now by Lemma 2 with \(\alpha = \omega \), there exists an \(n < \omega \) and a formula \(A* \in \Gamma_\lambda^{(n+1)} \) such that \(\bar{C} \ni A^*(a_1, \ldots, a_\lambda) \). By Theorem 2, for some \(k \), \(R_\lambda(A') = (n + 1, k) \). This is a contradiction so there is no \(\bar{C} \) and no \(\beta > \omega \) and no \(p \) with \(p \in S_\beta^{(\bar{\alpha})} \). Hence \(\alpha_T < \omega \).

This proof relied on Theorem 0 which is shown in [1] to be equivalent to Vaught's conjecture that \(\kappa_1 \)-categorical theory has either 1 or \(\aleph_0 \)-countable models. According to Morley this conjecture had already been verified under the assumption that \(\alpha_T \) was finite. In fact, it is easy to deduce Lemma 13 of [1] which is crucial to the proof of Vaught's conjecture from our Theorem 3.
REFERENCES

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823

Current address: Department of Mathematics, University of Illinois at Chicago Circle, Chicago, Illinois 60680