Intersections of quasi-local domains
HTML articles powered by AMS MathViewer
- by Bruce Prekowitz
- Trans. Amer. Math. Soc. 181 (1973), 329-339
- DOI: https://doi.org/10.1090/S0002-9947-1973-0319986-7
- PDF | Request permission
Abstract:
Let $R = \bigcap {{V_i}}$ be an intersection of quasi-local domains with a common quotient field $K$. Our goal is to find conditions on the ${V_i}$’s in order to get some or all of ${V_i}$’s to be localizations of $R$. We show for example that if ${V_1}$ is a $1$-dimensional valuation domain and if ${V_1} \nsupseteq {V_2}$, then both ${V_1}$ and ${V_2}$ are localizations of $R = {V_1} \cap {V_2}$.References
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249, DOI 10.1007/978-3-662-29244-0
- Jack Ohm, Some counterexamples related to integral closure in $D[[x]]$, Trans. Amer. Math. Soc. 122 (1966), 321–333. MR 202753, DOI 10.1090/S0002-9947-1966-0202753-9
- William Heinzer, Noetherian intersections of integral domains. II, Conference on Commutative Algebra (Univ. Kansas, Lawrence, Kan., 1972), Lecture Notes in Math., Vol. 311, Springer, Berlin, 1973, pp. 107–119. MR 0340250
- William Heinzer and Jack Ohm, Noetherian intersections of integral domains, Trans. Amer. Math. Soc. 167 (1972), 291–308. MR 296095, DOI 10.1090/S0002-9947-1972-0296095-6
- Malcolm Griffin, Some results on $v$-multiplication rings, Canadian J. Math. 19 (1967), 710–722. MR 215830, DOI 10.4153/CJM-1967-065-8
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 181 (1973), 329-339
- MSC: Primary 13H10
- DOI: https://doi.org/10.1090/S0002-9947-1973-0319986-7
- MathSciNet review: 0319986