Successive remainders of the Newton series
HTML articles powered by AMS MathViewer
- by G. W. Crofts and J. K. Shaw
- Trans. Amer. Math. Soc. 181 (1973), 369-383
- DOI: https://doi.org/10.1090/S0002-9947-1973-0320286-X
- PDF | Request permission
Abstract:
If $f$ is analytic in the open unit disc $D$ and $\lambda$ is a sequence of points in $D$ converging to 0, then $f$ admits the Newton series expansion $f(z) = f({\lambda _1}) + \sum \nolimits _{n = 1}^\infty {\Delta _\lambda ^nf({\lambda _{n + 1}})(z - {\lambda _1})(z - {\lambda _2}) \cdots (z - {\lambda _n})}$, where $\Delta _\lambda ^nf(z)$ is the $n$th divided difference of $f$ with respect to the sequence $\lambda$. The Newton series reduces to the Maclaurin series in case ${\lambda _n} \equiv 0$. The present paper investigates relationships between the behavior of zeros of the normalized remainders $\Delta _\lambda ^kf(z) = \Delta _\lambda ^kf({\lambda _{k + 1}}) + \sum \nolimits _{n = k + 1}^\infty {\Delta _\lambda ^nf({\lambda _{n + 1}})(z - {\lambda _{k + 1}}) \cdots (z - {\lambda _n})}$ of the Newton series and zeros of the normalized remainders $\sum \nolimits _{n = k}^\infty {{a_n}{z^{n - k}}}$ of the Maclaurin series for $f$. Let ${C_\lambda }$ be the supremum of numbers $c > 0$ such that if $f$ is analytic in $D$ and each of $\Delta _\lambda ^kf(z),\;0 \leqslant k < \infty$, has a zero in $|z| \leqslant c$, then $f \equiv 0$. The corresponding constant for the Maclaurin series (${C_\lambda }$, where ${\lambda _n} \equiv 0$) is called the Whittaker constant for remainders and is denoted by $W$. We prove that ${C_\lambda } \geqslant W$, for all $\lambda$, and, moreover, ${C_\lambda } = W$ if $\lambda \in {l_1}$. In obtaining this result, we prove that functions $f$ analytic in $D$ have expansions of the form $f(z) = \sum \nolimits _{n = 0}^\infty {\Delta _\lambda ^nf({z_n}){C_n}(z)}$, where $|{z_n}| \leqslant W$, for all $n$, and ${C_n}(z)$ is a polynomial of degree $n$ determined by the conditions $\Delta _\lambda ^j{C_k}({z_j}) = {\delta _{jk}}$.References
- J. D. Buckholtz, Zeros of partial sums of power series. II, Michigan Math. J. 17 (1970), 5–14. MR 259076, DOI 10.1307/mmj/1029000369
- J. D. Buckholtz and J. L. Frank, Whittaker constants, Proc. London Math. Soc. (3) 23 (1971), 348–370. MR 296297, DOI 10.1112/plms/s3-23.2.348
- J. D. Buckholtz and J. K. Shaw, Zeros of partial sums and remainders of power series, Trans. Amer. Math. Soc. 166 (1972), 269–284. MR 299762, DOI 10.1090/S0002-9947-1972-0299762-3
- Philip J. Davis, Interpolation and approximation, Blaisdell Publishing Co. [Ginn and Co.], New York-Toronto-London, 1963. MR 0157156
- M. M. Dragilev, On the convergence of the Abel-Gončarov interpolation series, Uspehi Mat. Nauk 15 (1960), no. 3 (93), 151–155 (Russian). MR 0114009
- J. L. Frank and J. K. Shaw, Abel-Gončarov polynomial expansions, J. Approximation Theory 10 (1974), 6–22. MR 346161, DOI 10.1016/0021-9045(74)90092-6
- Einar Hille, Analytic function theory. Vol. 1, Introductions to Higher Mathematics, Ginn and Company, Boston, Mass., 1959. MR 0107692 G. Kóthe, Topological vector spaces. I, Die Grundlehren der math. Wissenschaften, Band 159, Springer-Vetlag, New York, 1959. MR 40 #1750.
- A. L. Peressini, Concerning the order structure of Köthe sequence spaces. II, Michigan Math. J. 11 (1964), 357–367. MR 166604, DOI 10.1307/mmj/1028999190
- Michel Pommiez, Sur la suite des différences divisées successives relatives à une fonction analytique, C. R. Acad. Sci. Paris 260 (1965), 5161–5164 (French). MR 199413
- Helmut H. Schaefer, Topological vector spaces, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1966. MR 0193469
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 181 (1973), 369-383
- MSC: Primary 30A08
- DOI: https://doi.org/10.1090/S0002-9947-1973-0320286-X
- MathSciNet review: 0320286