Free $Z_{8}$ actions on $S^{3}$
HTML articles powered by AMS MathViewer
- by Gerhard X. Ritter
- Trans. Amer. Math. Soc. 181 (1973), 195-212
- DOI: https://doi.org/10.1090/S0002-9947-1973-0321078-8
- PDF | Request permission
Abstract:
This paper is devoted to the problem of classifying periodic homeomorphisms which act freely on the $3$-sphere. The main result is the classification of free period eight actions and a generalization to free actions whose squares are topologically equivalent to orthogonal transformations. The result characterizes those $3$-manifolds which have the $3$-sphere as universal covering space and the cyclic group of order eight as fundamental group.References
- R. H. Bing, An alternative proof that $3$-manifolds can be triangulated, Ann. of Math. (2) 69 (1959), 37–65. MR 100841, DOI 10.2307/1970092
- Glen E. Bredon and John W. Wood, Non-orientable surfaces in orientable $3$-manifolds, Invent. Math. 7 (1969), 83–110. MR 246312, DOI 10.1007/BF01389793
- David W. Henderson, Extensions of Dehn’s lemma and the loop theorem, Trans. Amer. Math. Soc. 120 (1965), 448–469. MR 187233, DOI 10.1090/S0002-9947-1965-0187233-0
- David W. Henderson, Relative general position, Pacific J. Math. 18 (1966), 513–523. MR 200933, DOI 10.2140/pjm.1966.18.513
- J. F. P. Hudson, Piecewise linear topology, W. A. Benjamin, Inc., New York-Amsterdam, 1969. University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees. MR 0248844
- G. R. Livesay, Fixed point free involutions on the $3$-sphere, Ann. of Math. (2) 72 (1960), 603–611. MR 116343, DOI 10.2307/1970232 K. Reidemeister, Homotopieringe und Linsenräume, Abh. Math. Sem. Univ. Hamburg 11 (1935), 102-109.
- P. M. Rice, Free actions of $Z_{4}$ on $S^{3}$, Duke Math. J. 36 (1969), 749–751. MR 248814 H. Seifert and W. Threlfall, Lehrbuch der Topologie, Teubner Verlag, Leipzig, 1934. E. C. Zeeman, Seminar on combinatorial topology, Mimeographed Notes, Inst. Hautes Études Sci., Paris, 1963.
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 181 (1973), 195-212
- MSC: Primary 55C35; Secondary 57A10
- DOI: https://doi.org/10.1090/S0002-9947-1973-0321078-8
- MathSciNet review: 0321078