A law of iterated logarithm for stationary Gaussian processes
HTML articles powered by AMS MathViewer
- by Pramod K. Pathak and Clifford Qualls
- Trans. Amer. Math. Soc. 181 (1973), 185-193
- DOI: https://doi.org/10.1090/S0002-9947-1973-0321170-8
- PDF | Request permission
Abstract:
In this article the following results are established. Theorem A. Let $\{ X(t):0 \leqslant t < \infty \}$ be a stationary Gaussian process with continuous sample functions and $E[X(t)] \equiv 0$. Suppose that the covariance function $r(t)$ satisfies the following conditions. (a) $r(t) = 1 - |t{|^\alpha }H(t) + o(|t{|^\alpha }H(t))$ as $t \to 0$, where $0 < \alpha \leqslant 2$ and $H$ varies slowly at zero, and (b) $r(t) = O(1/\log t)$ as $t \to \infty$ Then for any nondecreasing positive function $\phi (t)$ defined on $[a,\infty )$ with $\phi (\infty ) = \infty ,P[X(t) > \phi (t)$ i.o. for some sequence ${t_n} \to \infty ] = 0or1$ according as the integral $I(\phi ) = \int _a^\infty {g(\phi (t))\phi {{(t)}^{ - 1}}\exp ( - {\phi ^2}(t)/2)dt}$ is finite or infinite, where $g(x) = 1/_\sigma ^{ \sim - 1}(1/x)$ is a regularly varying function with exponent $2/\alpha$ and $_\sigma ^{ \sim 2}(t) = 2|t{|^\alpha }H(t)$.
Theorem C. Let $\{ {X_n}:n \geqslant 1\}$ be a stationary Gaussian sequence with zero mean and unit variance. Suppose that its covariance function satisfies, for some $\gamma > 0,r(n) = O(1/{n^\gamma })\;as\;n \to \infty$. Let $\{ \phi (n):n \geqslant 1\}$ be a nondecreasing sequence of positive numbers with ${\lim _{n \to \infty }}\phi (n) = \infty$; suppose that $\Sigma (1/\phi (n))\exp ( - {\phi ^2}(n)/2) = \infty$. Then \[ \lim _{n \to \infty } \sum _{1 \leq k \leq n} I_k / \sum _{1 \leq k \leq n} E[I_k] = 1\quad \mathrm {a.s.}, \] where $I_k$ denotes the indicator function of the event $\{ {X_k} > \phi (k)\}$.
References
- W. Feller, The fundamental limit theorems in probability, Bull. Amer. Math. Soc. 51 (1945), 800–832. MR 13252, DOI 10.1090/S0002-9904-1945-08448-1
- W. Feller, The general form of the so-called law of the iterated logarithm, Trans. Amer. Math. Soc. 54 (1943), 373–402. MR 9263, DOI 10.1090/S0002-9947-1943-0009263-7
- Pramod K. Pathak and Clifford Qualls, A law of iterated logarithm for stationary Gaussian processes, Trans. Amer. Math. Soc. 181 (1973), 185–193. MR 321170, DOI 10.1090/S0002-9947-1973-0321170-8
- James Pickands III, An iterated logarithm law for the maximum in a stationary Gaussian sequence, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 12 (1969), 344–353. MR 251776, DOI 10.1007/BF00538755
- James Pickands III, Upcrossing probabilities for stationary Gaussian processes, Trans. Amer. Math. Soc. 145 (1969), 51–73. MR 250367, DOI 10.1090/S0002-9947-1969-0250367-X
- James Pickands III, Asymptotic properties of the maximum in a stationary Gaussian process, Trans. Amer. Math. Soc. 145 (1969), 75–86. MR 250368, DOI 10.1090/S0002-9947-1969-0250368-1
- Clifford Qualls and Hisao Watanabe, An asymptotic $0-1$ behavior of Gaussian processes, Ann. Math. Statist. 42 (1971), 2029–2035. MR 307317, DOI 10.1214/aoms/1177693070
- Clifford Qualls and Hisao Watanabe, Asymptotic properties of Gaussian processes, Ann. Math. Statist. 43 (1972), 580–596. MR 307318, DOI 10.1214/aoms/1177692638 C. Qualls, G. Simmons and H. Watanabe, A note on a $0-1$ law for stationary Gaussian processes, Mimeo Series #798, Inst. of Statistics, University of North Carolina, Raleigh, N. C., 1972.
- Clifford Qualls and Hisao Watanabe, Asymptotic properties of Gaussian random fields, Trans. Amer. Math. Soc. 177 (1973), 155–171. MR 322943, DOI 10.1090/S0002-9947-1973-0322943-8
- Hisao Watanabe, An asymptotic property of Gaussian processes. I, Trans. Amer. Math. Soc. 148 (1970), 233–248. MR 256478, DOI 10.1090/S0002-9947-1970-0256478-5
- Antoni Zygmund, Trigonometrical series, Chelsea Publishing Co., New York, 1952. 2nd ed. MR 0076084
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 181 (1973), 185-193
- MSC: Primary 60G15; Secondary 60F20
- DOI: https://doi.org/10.1090/S0002-9947-1973-0321170-8
- MathSciNet review: 0321170