Upper bounds for vertex degrees of planar $5$-chromatic graphs
HTML articles powered by AMS MathViewer
- by Lee W. Johnson
- Trans. Amer. Math. Soc. 181 (1973), 53-59
- DOI: https://doi.org/10.1090/S0002-9947-1973-0321780-8
- PDF | Request permission
Abstract:
Upper bounds are given for the degrees of vertices in planar $5$-chromatic graphs. Some inequalities are derived for irreducible graphs which restrict the type of planar graphs that can be irreducible.References
- Claude Berge, The theory of graphs and its applications, Methuen & Co., Ltd., London; John Wiley & Sons, Inc., New York, 1962. Translated by Alison Doig. MR 0132541
- A. Errera, Une contribution au problème des quatre couleurs, Bull. Soc. Math. France 53 (1925), 42–55 (French). MR 1504874, DOI 10.24033/bsmf.1080
- M. Malec and Z. Skupień, On the maximal planar graphs and the four colour problem, Prace Mat. 12 (1969), 205–209. MR 0244101
- Oystein Ore, The four-color problem, Pure and Applied Mathematics, Vol. 27, Academic Press, New York-London, 1967. MR 0216979 O. Ore and G. Stemple, Numerical methods in the four color problem, Recent Progress in Combinatorics (Proc. Third Waterloo Conf. on Combinatorics, 1968), Academic Press, New York, 1969.
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 181 (1973), 53-59
- MSC: Primary 05C15
- DOI: https://doi.org/10.1090/S0002-9947-1973-0321780-8
- MathSciNet review: 0321780