On derived functors of limit
HTML articles powered by AMS MathViewer
- by Dana May Latch
- Trans. Amer. Math. Soc. 181 (1973), 155-163
- DOI: https://doi.org/10.1090/S0002-9947-1973-0323866-0
- PDF | Request permission
Abstract:
If $\mathcal {A}$ is a cocomplete category with enough projectives and ${\mathbf {C}}$ is a $\downarrow$-finite small category, then there is a spectral sequence which shows that the cardinality of ${\mathbf {C}}$ and colimits over finite initial subcategories ${\mathbf {C’}}$ of ${\mathbf {C}}$ are determining factors for computation of derived functors of colimit. Applying a recent result of Mitchell to this spectral sequence we show that if the cardinality of ${\mathbf {C}}$ is at most $\aleph _{n}$, and the flat dimension of ${\Delta ^ \ast }Z$ (constant diagram of type ${{\mathbf {C}}^{{\text {op}}}}$ with value $Z$) is $k$, then the derived functors of ${\lim _{\mathbf {C}}}:\mathcal {A}{b^{\mathbf {C}}} \to \mathcal {A}b$ vanish above dimension $n + 1 + k$.References
- Michel André, Limites et fibrés, C. R. Acad. Sci. Paris 260 (1965), 756–759 (French). MR 175945
- Alexander Grothendieck, Sur quelques points d’algèbre homologique, Tohoku Math. J. (2) 9 (1957), 119–221 (French). MR 102537, DOI 10.2748/tmj/1178244839 —, Technique de descente et théorèmes d’existence en géométrie algébrique. II. Le théorème d’existence en théorie formelle des modules, Séminaire Bourbaki, 12e année 1959/60, fase. 2, exposé 195, Secrétariat mathématique, Paris, 1960. MR 23 #A2273.
- Peter Hilton, On the category of direct systems and functors on groups, J. Pure Appl. Algebra 1 (1971), no. 1, 1–26. MR 284487, DOI 10.1016/0022-4049(71)90009-0 D. Latch, On derived functors of limit, Thesis, CUNY, 1971.
- Olav Arnfinn Laudal, Sur les limites projectives et inductives, Ann. Sci. École Norm. Sup. (3) 82 (1965), 241–296 (French). MR 0200326, DOI 10.24033/asens.1141
- J. Milnor, On axiomatic homology theory, Pacific J. Math. 12 (1962), 337–341. MR 159327, DOI 10.2140/pjm.1962.12.337
- Barry Mitchell, Theory of categories, Pure and Applied Mathematics, Vol. XVII, Academic Press, New York-London, 1965. MR 0202787
- Barry Mitchell, Rings with several objects, Advances in Math. 8 (1972), 1–161. MR 294454, DOI 10.1016/0001-8708(72)90002-3
- Barry Mitchell, The cohomological dimension of a directed set, Canadian J. Math. 25 (1973), 233–238. MR 371996, DOI 10.4153/CJM-1973-023-0
- Georg Nöbeling, Über die Derivierten des Inversen und des direkten Limes einer Modulfamilie, Topology 1 (1962), 47–61 (German). MR 138666, DOI 10.1016/0040-9383(62)90095-2
- Ulrich Oberst, Homology of categories and exactness of direct limits, Math. Z. 107 (1968), 87–115. MR 244347, DOI 10.1007/BF01111023
- B. L. Osofsky, Upper bounds on homological dimensions, Nagoya Math. J. 32 (1968), 315–322. MR 232805, DOI 10.1017/S002776300002674X
- Jan-Erik Roos, Sur les foncteurs dérivés de $\underleftarrow \lim$. Applications, C. R. Acad. Sci. Paris 252 (1961), 3702–3704 (French). MR 132091
- H. B. Stauffer, Derived functors without injectives, Category Theory, Homology Theory and their Applications, I (Battelle Institute Conference, Seattle, Wash., 1968, Vol. One), Springer, Berlin, 1969, pp. 159–166. MR 0242923
- H. B. Stauffer, The completion of an abelian category, Trans. Amer. Math. Soc. 170 (1972), 403–414. MR 302738, DOI 10.1090/S0002-9947-1972-0302738-0 Zuei-Zong Yeh, Thesis, Princeton University, Princeton, N. J., 1959.
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 181 (1973), 155-163
- MSC: Primary 18E25
- DOI: https://doi.org/10.1090/S0002-9947-1973-0323866-0
- MathSciNet review: 0323866