ON DERIVED FUNCTORS OF LIMIT

BY

DANA MAY LATCH

ABSTRACT. If \mathcal{A} is a cocomplete category with enough projectives and \mathcal{C} is a λ-finite small category, then there is a spectral sequence which shows that the cardinality of \mathcal{C} and colimits over finite initial subcategories \mathcal{C}' of \mathcal{C} are determining factors for computation of derived functors of colimit. Applying a recent result of Mitchell to this spectral sequence we show that if the cardinality of \mathcal{C} is at most κ, and the flat dimension of $\Delta^k Z$ (constant diagram of type \mathcal{C}^{op} with value Z) is k, then the derived functors of $\text{lim}_C : \mathcal{A}^{\mathcal{C}} \to \mathcal{A}^X$ vanish above dimension $n + 1 + k$.

Introduction. The purpose of the paper is to study derived functors of limit. This topic was first considered by Milnor [7], Yeh [17], and Roos [14]. The results of Roos, Noebeling [11], André [1], and Laudal [6] all show that derived functors of colimit can be interpreted as the homology of a simplicial complex. This paper introduces a spectral sequence, which isolates the cardinality of \mathcal{C} and colimits over finitely generated initial subcategories \mathcal{C}' of \mathcal{C} as determining factors for the vanishing of derived functors of colimit (dually limit).

If \mathcal{A} is an abelian category, Stauffer [16] shows that there exists an AB5 category $D(\mathcal{A})$, called the directed completion of \mathcal{A}, and an exact, Ext-preserving, projective preserving embedding $J : \mathcal{A} \to D(\mathcal{A})$. $D(\mathcal{A})$ is similar to the cocontinuous extension of \mathcal{A} studied by Hilton [4] and to Grothendieck's category of Pro-objects of \mathcal{A} [3].

If \mathcal{A} is cocomplete, we get a coreflection $U : D(\mathcal{A}) \to \mathcal{A}$ of $J : \mathcal{A} \to D(\mathcal{A})$. These two functors together give rise to a factorization

$$\text{colim}_C : \mathcal{A}^{\mathcal{C}} \to \mathcal{A} \quad \text{into} \quad \mathcal{A}^{\mathcal{C}} \xrightarrow{\text{colim}_C} D(\mathcal{A}) \xrightarrow{U} \mathcal{A}.$$

When \mathcal{C} is a λ-finite small category and \mathcal{A} a cocomplete category with pro-
jectives, we apply a well-known technique of Grothendieck [2] to the above factorization of \(\text{colim}_C : \mathcal{C} \rightarrow \mathfrak{D} \). This results in a first quadrant spectral sequence

\[
E^2 = (L_* U) \left(L_* \text{colim}_C \right) (f^C(\mathcal{A})) \cong L_* \text{colim}_{C' \in \mathcal{F}(C)} \left(L_* \text{colim}_C \right) (\mathcal{A} | C')
\]

which converges to \((L_* \text{colim})_C(\mathcal{A}) \), where \(\mathcal{A} \) is a diagram in \(\mathfrak{D} \) of type \(C' \) and \(\mathcal{F}(C) \) the \(\mathcal{I} \)-finite directed ordered set of all finite initial subcategories \(C' \).

Many generalizations of ring theoretic results prove useful in applying the spectral sequence. Using a recent result of Mitchell [10], we show that if \(C \) is a \(\mathcal{I} \)-finite small category of cardinality at most \(\kappa_n \) and

\[
k = \sup \{ \mathfrak{m} | 0 \neq L_{n} \text{colim}_C : \mathcal{A} b^C \rightarrow \mathfrak{A} b \},
\]

then \(R' \text{lim}_{C_{op}} : \mathfrak{A} b_{op}^C \rightarrow \mathfrak{A} b \) vanishes for \(r > n + 1 + k \).

I wish to express my appreciation to Alex Heller for his encouragement and aid. Also, I thank Barry Mitchell for many enlightening conversations about this problem.

1. Preliminaries. If \(C \) is a small category, let \(|C| \) denote the set of objects of \(C \) and \(C(p, q) \) the set of morphisms from \(p \) to \(q \). If \(\alpha \) is a morphism of \(C \), then \(d\alpha \) and \(r\alpha \) will denote the domain and range of \(\alpha \), respectively. Let \(\|C\| \) represent the cardinality of the set \(C \). Then \(C \) is said to be an \(n \)-category if \(\|C\| \leq \kappa_n \) for \(n > 0 \), and a finite category if \(\|C\| < \kappa_0 \).

A subcategory \(C' \) of \(C \), denoted by \(C' \subseteq C \), will be called initial if \(\alpha \in C \) with \(r\alpha \in |C'| \) implies \(\alpha \in C' \) (and consequently \(d\alpha \in |C'| \)). It is clear that any initial subcategory is full. Let \(C(p) \) denote the smallest initial subcategory containing \(p \). Then if \(C(p, q) \neq \emptyset \), it is clear that \(C(p, q) \leq C(q) \). Also, \(C' \) initial implies \(C' = \bigcup_{p \in |C'|} C(p') \) and \(C(p') \leq C' \) for every \(p' \in |C'| \).

Definition 1.1. A small category \(C \) is said to be downward finite, \(\mathcal{I} \)-finite, if \(C(p) \) is finite for every \(p \in |C| \).

Let \(\mathcal{F}(C) \) represent the collection of all finitely-generated initial subcategories \(C' \) of \(C \). If \(C \) is \(\mathcal{I} \)-finite, then clearly \(\mathcal{F}(C) \) satisfies the following conditions:

(i) \(\mathcal{F}(C) \) is a directed ordered set under the natural ordering of inclusion of categories, with initial element the empty subcategory \(\emptyset \).

(ii) \(\mathcal{F}(C) \) is \(\mathcal{I} \)-finite, i.e. any finitely-generated initial subcategory has a finite number of initial subcategories.

(iii) If \(C \) is a \(n \)-category, then so is \(\mathcal{F}(C) \), i.e. \(\|C\| \leq \kappa_n \) implies \(\|\mathcal{F}(C)\| \leq \kappa_n \).

(iv) For every \(p \in |C| \), \(C(p) \in \mathcal{F}(C) \).

If \(\mathfrak{D} \) is an abelian category, then \(\mathfrak{D}^C \) will denote the abelian category of all diagrams of type \(C \), i.e. covariant functors \(\mathcal{A} : C \rightarrow \mathfrak{D} \), with \(\mathfrak{D}(\mathcal{A}, \mathcal{B}) \) the abelian group of natural transformations from \(\mathcal{A} \) to \(\mathcal{B} \). In particular, let \(\Delta A : C \rightarrow \mathfrak{D} \)
represent the constant functor with value A and $\Delta^* A : C^{op} \rightarrow \mathcal{A}$ the dual diagram. If $F : \mathcal{A} \rightarrow \mathcal{B}$ is any functor, let $F^C : \mathcal{A}^C \rightarrow \mathcal{B}^C$ denote the canonical functor given by $F^C(\mathcal{A})_p = F(A_p^*)$.

It is well known [8] that if \mathcal{A} is a cocomplete abelian category with enough projectives and/or injectives, then so is \mathcal{A}^C. For example, if $\mathcal{A} = \mathcal{A}^b$, the category of abelian groups, then \mathcal{A}^b^C is an AB5 category with enough projectives and injectives.

When \mathcal{A} is complete, there is a functor $\mathbf{W} : \mathcal{A}^C \rightarrow (\mathcal{A}^C)^C$ defined by $(\mathbf{W}A)_C = \text{colim}_C A | C'$ with $(\mathbf{W}A)_C^C = (\mathbf{W}A)_C^C : (\mathbf{W}A)_C^C \rightarrow (\mathbf{W}A)_C^C$ the canonical map of colimits induced by the inclusion $C' \leq C^C$.

Lemma 1.2. If \mathcal{A} is a cocomplete abelian category and C is a λ-finite small category, then

\begin{equation}
\mathcal{A}^C \xrightarrow{\mathbf{W}} (\mathcal{A}^C)^C \xrightarrow{\text{colim}_C} \mathcal{A}^C \xrightarrow{\text{colim}_C} (\mathcal{A}^C)^C
\end{equation}

commutes up to an isomorphism.

This follows easily from the definitions.

Furthermore, when \mathcal{A} cocomplete, there are two associated functors between \mathcal{A} and \mathcal{A}^C for each $p \in |C|$. The first is the canonical evaluation functor $\text{ev}_p : \mathcal{A}^C \rightarrow \mathcal{A}$ defined by $\text{ev}_p(\mathcal{A}) = A_p$, where $\mathcal{A} \in \mathcal{A}^C$. It is exact since exactness in \mathcal{A}^C is "pointwise". The second functor is $E_p : \mathcal{A} \rightarrow \mathcal{A}^C$ which is constructed in the following way. For each $X \in \mathcal{A}$ and $q \in |C|$, let $(E_p X)_q = \prod_{p \rightarrow q} X$, and let $(E_p X)(\beta) : (E_p X)_q \rightarrow (E_p X)_{q'}$, $\beta : q \rightarrow q'$ in C, be the canonical morphism such that $(E_p X)(\beta)i_a = i_{\beta.a}$, $i_a : X \rightarrow \prod_{p \rightarrow q} X$ being the natural inclusion into the coproduct. Similarly, for each morphism $f : X \rightarrow Y$ in \mathcal{A}, there is a natural transformation $(E_p f) : (E_p X) \rightarrow (E_p Y)$ defined by $(E_p f)i_a = i_a \cdot f$.

Proposition 1.3. If \mathcal{A} is cocomplete and abelian, then

(i) $E_p : \mathcal{A} \rightarrow \mathcal{A}^C$ is the coadjoint of $\text{ev}_p : \mathcal{A}^C \rightarrow \mathcal{A}$.

(ii) $E_p : \mathcal{A}^C \rightarrow \mathcal{A}$ is right exact and also preserves projectives (since $\text{ev}_p : \mathcal{A}^C \rightarrow \mathcal{A}$ is exact).

(iii) When \mathcal{A} has enough projectives \mathcal{A}^C has enough canonical projectives of the form $\prod_{q \in |C|} E_q P_q$, P_q projective in \mathcal{A}. If $A \in \mathcal{A}^C$ and for each $q \in |C|$, $P_q \rightarrow A_q$ is an epimorphism with P_q projective, then $\prod_{q \in |C|} E_q P_q \rightarrow A$ is an epimorphism in \mathcal{A}^C.
2. \(D(\mathcal{A}) \) and the spectral sequence.

Theorem 2.1. Associated with any abelian category \(\mathcal{A} \) there is an AB5 category \(D(\mathcal{A}) \) (called the directed completion of \(\mathcal{A} \)), and a natural embedding \(J : \mathcal{A} \to D(\mathcal{A}) \) such that \(J : \mathcal{A} \to D(\mathcal{A}) \) is exact, full, projective-preserving and \(\text{Ext} \)-preserving (i.e. \(\text{Ext}^n(J(A), J(B)) \cong \text{Ext}^n(A, B) \)). Furthermore, \(J : \mathcal{A} \to D(\mathcal{A}) \) and \(D(\mathcal{A}) \) together satisfy the following universal extension property:

(i) If \(\mathcal{B} \) is any cocomplete abelian category and \(F : \mathcal{A} \to \mathcal{B} \) is right exact, then there exists a unique cocontinuous (i.e. colimit-preserving) functor \(G : D(\mathcal{A}) \to \mathcal{B} \) such that

\[
\begin{array}{ccc}
\mathcal{A} & \xrightarrow{J} & D(\mathcal{A}) \\
\downarrow{F} & & \downarrow{G} \\
\mathcal{B} & \xrightarrow{id} & \mathcal{B}
\end{array}
\]

commutes up to isomorphism.

(ii) If \(\mathcal{B} \) is AB5 and \(F : \mathcal{A} \to \mathcal{B} \) is exact, then \(G : D(\mathcal{A}) \to \mathcal{B} \) is cocontinuous and exact.

For the details of the proof see Stauffer [16].

In particular, when \(\mathcal{A} \) itself is cocomplete there exists a unique cocontinuous (and consequently right exact) functor \(U : D(\mathcal{A}) \to \mathcal{A} \) such that \(U \cdot J \cong \text{id}_\mathcal{A} : \mathcal{A} \to \mathcal{A} \). Thus \(\mathcal{A} \) can be considered as a coreflective subcategory of \(D(\mathcal{A}) \). The next proposition follows easily from the facts that \(U : D(\mathcal{A}) \to \mathcal{A} \) is cocontinuous and \(U \cdot J \cong \text{id}_\mathcal{A} \).

Proposition 2.2. If \(\mathcal{C} \) is any small category and \(\mathcal{A} \) is cocomplete and abelian, then \(U(\text{colim}_\mathcal{C} J^{\mathcal{A}}(A)) \cong \text{colim}_\mathcal{C}(A) \) for all \(A \in \mathcal{A}^\mathcal{C} \).

By Proposition 2.2, \(\text{colim}_\mathcal{C} : \mathcal{A}^\mathcal{C} \to \mathcal{A} \) is factored into \(\text{colim}_\mathcal{C} : \mathcal{A}^\mathcal{C} \to D(\mathcal{A}) \) and \(U : D(\mathcal{A}) \to \mathcal{A} \). This factorization, for \(\mathcal{C} \) a \(\downarrow \)-finite small category and a cocomplete abelian category with enough projectives, will yield the spectral sequence which is the major tool of this paper. As a first step, we prove a series of lemmas to show that \(J^\mathcal{C} : \mathcal{A}^\mathcal{C} \to D(\mathcal{A})^\mathcal{C} \) preserve canonical projectives.

For the remainder of this section, \(\mathcal{A} \) will be assumed to be a cocomplete abelian category with enough projectives.

Lemma 2.3. For every \(p \in |\mathcal{C}| \), the following diagram commutes.

\[
\begin{array}{ccc}
\mathcal{A} & \xrightarrow{J} & D(\mathcal{A}) \\
\downarrow{E_p} & & \downarrow{E_p} \\
\mathcal{A}^\mathcal{C} & \xrightarrow{J^\mathcal{C}} & (D(\mathcal{A}))^\mathcal{C}
\end{array}
\]
Proof. It suffices to show that, for each \(q \in |C| \), \(J^C(E_p X)_q = E_p (j(X))_q \).

By definition, \(J^C(E_p X)_q = j(E_p X)_q = j(\coprod_{p \in q} X)_q \). Since \(C \) is \(\downarrow \)-finite, \((E_p X)_q = \coprod_{p \in q} X \) is a finite coproduct. \(J : \mathfrak{A} \to D(\mathfrak{A}) \) additive insures that \(j(\coprod_{p \in q} X) = \coprod_{p \in q} j(X) = E_p (j(X))_q \), and the lemma follows.

Using \(\downarrow \)-finiteness of \(C \), a proof similar to the above yields the next lemma.

Lemma 2.4. Let \(C \) be any \(\downarrow \)-finite small category, \(\{ X_p \}_{p \in |C|} \) any collection of objects in \(\mathfrak{A} \). Then

\[
J^C \left(\coprod_{p \in |C|} E_p X_p \right) = \coprod_{p \in C} E_p (j(X)_p).
\]

Corollary 2.5. \(J^C : \mathfrak{A}^C \to D(\mathfrak{A})^C \) preserves canonical projectives.

Proof. That \(J^C : \mathfrak{A}^C \to D(\mathfrak{A})^C \) preserves projectives follows immediately from Lemma 2.4, the definition of a canonical projective (1.3) and the fact that both \(E_p : \mathfrak{A} \to \mathfrak{A}^C \) and \(j : \mathfrak{A} \to D(\mathfrak{A}) \) preserve projectives.

Theorem 2.6 (Spectral sequence). If \(C \) is a \(\downarrow \)-finite ordered set, \(\mathfrak{A} \) is cocomplete with projectives, and \(\Lambda \in \mathfrak{A}^C \), then there is a first quadrant spectral sequence

\[
E^2_{pq} = (L_p U) \left(L_q \colim_C (J^C(\Lambda)) \right)
\]

converging to \((L_{p+q} \colim_C (J^C(\Lambda))) \).

Proof. Both \(\colim_C : D(\mathfrak{A})^C \to D(\mathfrak{A}) \) and \(J^C : \mathfrak{A}^C \to D(\mathfrak{A})^C \) (by Corollary 2.5) preserve projectives. Hence, the hypotheses of the "Grothendieck Two Functor Theorem" [2] are satisfied since \(U \circ \colim_C J^C \simeq \colim_C : \mathfrak{A}^C \to \mathfrak{A} \). \(U : D(\mathfrak{A}) \to \mathfrak{A} \) is right exact and \(\colim_C J^C : \mathfrak{A}^C \to D(\mathfrak{A}) \) preserves projectives. Applying this theorem of Grothendieck yields a spectral sequence with \(E^2_{pq} = (L_p U)(L_q \colim_C J^C(\Lambda))(\Lambda) \) converging to \((L_{p+q} \colim_C (J^C(\Lambda))) \). But since \(J^C : \mathfrak{A}^C \to D(\mathfrak{A})^C \) is both exact and projective-preserving,

\[
(L_p \colim_C J^C(\Lambda)) \simeq (L_p \colim_C (J^C(\Lambda))
\]

giving the required form.

Also, \(D(\mathfrak{A}), AB5, \) and \(J^C : \mathfrak{A}^C \to D(\mathfrak{A})^C \) exact yield the next corollary.

Corollary 2.7. If \(\Lambda \) is a \(\downarrow \)-finite directed ordered set, and \(\Lambda \in \mathfrak{A}^A \), then

\((L_p U)(\colim_{\Lambda} J^A(\Lambda)) \simeq (L_p \colim_{\Lambda} (J^A(\Lambda))) \) for every \(p > 0 \).
Recall that \(W : \mathcal{C} \rightarrow \mathcal{F}(\mathcal{C}) \) is the functor defined by \((W\mathcal{A})_{\mathcal{C}'} = \text{colim}_{\mathcal{C}'} \mathcal{A} \mid \mathcal{C} \), where \(\mathcal{F}(\mathcal{C}) \) is the \(\downarrow \)-finite directed ordered set consisting of all finitely-generated initial subcategories \(\mathcal{C}' \).

Lemma 2.8. If \(\mathcal{C} \) is a \(\downarrow \)-finite small category, then

\[
\left(L_p \text{ colim}_{\mathcal{C}} f^C \right)(\mathcal{A}) \cong \text{colim}_{\mathcal{F}(\mathcal{C})} \left(L_p W \right)(\mathcal{A})
\]

for every \(\mathcal{A} \in \mathcal{C} \).

Proof. Since \(J : \mathcal{A} \rightarrow D(\mathcal{A}) \) is exact, it commutes with finite colimits, and therefore \(J((W\mathcal{A})_{\mathcal{C}'}) \cong W(f^C(\mathcal{A}))_{\mathcal{C}'} \), for every \(\mathcal{C}' \in \mathcal{F}(\mathcal{C}) \). But by Lemma 1.2,
\[
\text{colim}_{\mathcal{C}} f^C(\mathcal{A}) \cong \text{colim}_{\mathcal{F}(\mathcal{C})} W(f^C(\mathcal{A})),
\]

and thus \(\text{colim}_{\mathcal{C}} f^C(\mathcal{A}) \cong \text{colim}_{\mathcal{C}' \in \mathcal{F}(\mathcal{C})} J((W\mathcal{A})_{\mathcal{C}'}) \)

\(\cong \text{colim}_{\mathcal{F}(\mathcal{C})} J(\mathcal{F}(\mathcal{C}))(\mathcal{A}) \). Since \(\mathcal{F}(\mathcal{C}) \) is a \(\downarrow \)-finite directed ordered set and \(D(\mathcal{A}) \) is AB5, \(\text{colim}_{\mathcal{F}(\mathcal{C})} f^C(\mathcal{A}) : \mathcal{F}(\mathcal{C}) \rightarrow D(\mathcal{A}) \) is exact and therefore commutes with homology. Consequently, \((L_\ast \text{colim}_{\mathcal{C}} f^C(\mathcal{A})) \cong \text{colim}_{\mathcal{F}(\mathcal{C})} J(f^C(\mathcal{A})) \).

Combining Lemma 2.8, Theorem 2.6, and Corollary 2.7 yields several equivalent forms for the spectral sequence.

Theorem 2.9. If \(\mathcal{A} \) is cocomplete with enough projectives, \(\mathcal{C} \) a \(\downarrow \)-finite small category, and \(\mathcal{A} \in \mathcal{C} \), then there is a first quadrant spectral sequence

\[
E^{pq}_2 \cong \left(L_p U \right) \left(L_q \text{ colim}_{\mathcal{C}} f^C(\mathcal{A}) \right) \cong \left(L_p U \left(\text{colim}_{\mathcal{F}(\mathcal{C})} \left(L_q W(\mathcal{A}) \right) \right) \right) \cong \left(L_p \text{ colim}_{\mathcal{F}(\mathcal{C})} \left(L_q W(\mathcal{A}) \right) \right)
\]

converging to \((L_{p+q} \text{ colim}_{\mathcal{C}} f^C)(\mathcal{A}) \).

Thus from the factorization of \(\text{colim}_{\mathcal{C}} : \mathcal{A} \rightarrow \mathcal{A} \) into \(\text{colim}_{\mathcal{C}} f^C : \mathcal{A} \rightarrow D(\mathcal{A}) \) and \(U : D(\mathcal{A}) \rightarrow \mathcal{A} \), we get a spectral sequence which involves derived functors of colimit over a directed ordered set, namely, \(\mathcal{F}(\mathcal{C}) \).

3. Applications. In this section, we apply a recent result of Mitchell [10] to the spectral sequence. This shows the cardinality of \(\mathcal{C} \) is related to the vanishing of higher derived functors of \(\text{colim}_{\mathcal{C}} : \mathcal{A} \rightarrow \mathcal{A} \), \(\mathcal{C} \) an AB4 category and \(\mathcal{C} \) a \(\downarrow \)-finite small category. The method will employ generalizations of dimension theory for rings developed by Mitchell in Rings with several objects [9].

If \(\mathcal{A} \in \mathcal{C} \), then the homological (projective) dimension of \(\mathcal{A} \), denoted \(\text{hd}_\mathcal{C} \mathcal{A} \), is defined to be \(\sup \{ k \mid \text{Ext}^k_{\mathcal{C}}(\mathcal{A},-) \neq 0 \} \) or equivalently, to be the smallest integer for which there is a projective resolution

\[
0 \rightarrow P_n \rightarrow \cdots \rightarrow P_0 \rightarrow \mathcal{A} \rightarrow 0
\]
when \(\mathcal{G} \) is cocomplete with projectives.

Proposition 3.1. \(\text{hd}_C\mathcal{A} = \sup|k| 0 \neq R^k \lim_C \colon \mathcal{A}bC \to \mathcal{A} \).

Proof. Let \(\Delta \colon \mathcal{A}b \to \mathcal{A}bC \) be the full exact embedding which assigns to each \(G \in \mathcal{A}b \) the constant diagram \(\Delta G \). By definition, \(\Delta \colon \mathcal{A}b \to \mathcal{A}bC \) is the coadjoint of \(\lim_C \colon \mathcal{A}bC \to \mathcal{A}b \) and therefore \(\mathcal{A}bC(\Delta Z, \mathcal{A}) \simeq \mathcal{A}(Z, \lim_C \mathcal{A}) \simeq \lim_C \mathcal{A} \). Taking derived functors gives the result.

If \(\mathcal{G} \) is any cocomplete category and \(C \) is any small category, there exists a covariant additive cocontinuous (colimit-preserving) bifunctor \(\otimes_C \colon \mathcal{A}bC^{\text{op}} \times \mathcal{C} \to \mathcal{G} \) (whose value on the pair \(M, F \) is denoted by \(M \otimes_C F \)), such that for every \(M \in \mathcal{A}bC^{\text{op}}, F \in \mathcal{C} \), and \(X \in \mathcal{G} \), \(\mathcal{A}bC^{\text{op}}(M, \mathcal{A}(F, X)) \simeq \mathcal{A}(M \otimes_C F, X) \) (where \(\mathcal{A}(F, X) \colon C_{\text{op}} \to \mathcal{G} \) is given by \(\mathcal{A}(F, X)_p = \mathcal{A}(F_p, X) \)). Define \(\text{Tor}_*(M, F) = H_p(P \otimes_C F) \), where \(P \) is a projective resolution for \(M \). From [12], we know that when \(\mathcal{G} \) is AB4 and when \(M \) has free values (for example \(M = \Delta^*Z \)), \(\text{Tor}_*(M, _) \) is the sequence of left satellites (left derived functors when \(\mathcal{C} \) has enough projectives) of \(M \otimes__ : C_{\text{op}} \to C_{\text{op}} \).

Lemma 3.2. If \(\mathcal{G} \) is AB4, then \(\text{Tor}_*(\Delta^*Z, _) : C_{\text{op}} \to \mathcal{G} \) and \(\text{L}_* \text{colim}_C : \mathcal{C} \to \mathcal{G} \) are isomorphic.

Proof. If \(F \in \mathcal{C} \) and \(X \in \mathcal{G} \), then by definitions of \(\text{colim}_C : \mathcal{C} \to \mathcal{G} \) and \(\text{lim}_{C_{\text{op}}} : \mathcal{A}bC^{\text{op}} \to \mathcal{A}b \),

\[
\mathcal{A}(\Delta^*Z \otimes_C F, X) \simeq \mathcal{A}bC^{\text{op}}(\Delta^*Z, \mathcal{A}(F, X)) \simeq \mathcal{A}b\left(Z, \lim_{C_{\text{op}}} \mathcal{A}(F, X)\right)
\simeq \lim_{C_{\text{op}}} \mathcal{A}(F, X) \simeq \mathcal{A}\left(\text{colim}_C F, X\right).
\]

By Yoneda, this composite natural equivalence must come from a natural equivalence. Hence

\[
\Delta^*Z \otimes_C F \simeq \text{colim}_C F \quad \text{and} \quad \Delta^*Z \otimes_{C_{\text{op}}} \simeq \text{colim}_C : \mathcal{C} \to \mathcal{G}.
\]

Since \(\mathcal{G} \) is AB4, \(\text{L}_* \text{colim}_C \simeq \text{Tor}_*(\Delta^*Z, _) : \mathcal{C} \to \mathcal{G} \).

If \(\mathcal{G} = \mathcal{A}b \), we say the **weak (or flat) dimension of** \(M \in \mathcal{A}bC^{\text{op}} \), denoted \(\text{wd}_C M \), is the \(\sup|k|0 \neq \text{Tor}_k \rangle C(M, _) : \mathcal{A}bC \to \mathcal{A}b \). Thus by Lemma 3.2, \(\text{wd}_C \Delta^*Z = \sup|k|0 \neq \text{L}_k \text{colim}_C : \mathcal{A}bC \to \mathcal{A}b \). Now when \(\mathcal{G} \) is AB5, we can use flat resolutions of \(M \) to compute \(\text{Tor}(M, F) \). This yields the second part of the following (see [9]).

Corollary 3.3. (i) If \(\mathcal{G} \) is AB4 and \(\text{hd}_C \Delta^*Z = r \), then \(0 = \text{L}_k \text{colim}_C : \mathcal{C} \to \mathcal{G} \) for every \(k > r \).

(ii) If \(\mathcal{G} \) is AB5 and \(\text{wd}_C \Delta^*Z = r \), then \(0 = \text{L}_k \text{colim}_C : \mathcal{C} \to \mathcal{G} \) for every \(k > r \).
Using other generalizations of ring theoretic results of Osofsky [13], Mitchell [10] proves the next result.

Theorem 3.4. Let κ_n be the smallest cardinal number of a cofinal subset of the directed (upward) ordered set $\Lambda (-1 \leq n \leq \infty)$. Then $\text{hd}_{\Lambda}^{\text{op}} \Lambda^* Z = n + 1$.

This and the above corollary immediately imply that $L_p \colim_A: \mathfrak{A}^\Lambda \to \mathfrak{A}$ vanish for p above $n + 1$ whenever \mathfrak{A} is AB4, e.g. $\mathfrak{A} = \mathfrak{A}_b$.

Using these preliminary results, we now consider the spectral sequence.

Theorem 3.5. Suppose \mathfrak{A} is an AB4 category with projectives, and C is a small \downarrow-finite Π-category with $\text{wd}_C \Lambda^* Z = k$. Then $L_r \colim_C: \mathfrak{A}^C \to \mathfrak{A}$ vanishes whenever $r > n + 1 + k$.

Proof. By Theorem 2.9, there exists a first quadrant spectral sequence

$$E_{pq}^2 = (L_p U) \left(L_q \colim_C \mathcal{F} C(A) \right) \left(\mathcal{F} C(A) \right) \cong \left(L_p \colim_C \mathcal{F} C(A) \right) \left(L_q W(A) \right) C^A$$

converging to $(L_p + q \colim_C C(A)) A$ for every $A \in \mathfrak{A}^C$. We first hold p constant.

Since $\mathfrak{A}(C)$ is AB5, Corollary 3.3(ii) and $\text{wd}_C \Lambda^* Z = k$ insure that $(L_p U)$$\left(L_q \colim C \mathcal{F} C(A) \right)$ is zero for $q > k$. Next, let q be held constant. C an Π-category implies $\mathfrak{A}(C)$, the directed set of all finite initial subcategories, is also a Π-category, i.e. $\| \mathfrak{A}(C) \| < \kappa_n$. Therefore, by Proposition 3.4, $\text{hd}_{\mathfrak{A}(C)^{\text{op}}} \Lambda^* Z = n + 1$ and $(L_p \colim_C \mathcal{F} C(A)) \left(L_q W(A) \right) C^A = 0$ for $p > n + 1$. Combining these together yields $(L_r \colim_C \mathcal{F} C(A)) \left(L_q W(A) \right) C^A = 0$ for $r > n + 1 + k$.

The dual statement is the following.

Theorem 3.6. If \mathfrak{A} is an AB4 category with injectives and C is a \downarrow-finite small Π-category with $\text{wd}_C \Lambda^* Z = k$, then $R^r \lim_{C^{\text{op}}} \mathfrak{A}^{C^{\text{op}}} \to \mathfrak{A}$ is zero for $r > n + 1 + k$.

In the case when $\mathfrak{A} = \mathfrak{A}_b$, the following corollary holds.

Corollary 3.7. If C is a \downarrow-finite small Π-category with $\text{wd}_C \Lambda^* Z = k$, then $\text{hd}_{\mathfrak{A}_b^{\text{op}}} \Lambda^* Z \leq n + 1 + k$.

This follows from Lemma 3.1.

Lastly, putting Corollary 3.3 and Corollary 3.7 together, we can drop the hypothesis of Corollary 3.7 that \mathfrak{A} have enough projectives.

Theorem 3.9. If \mathfrak{A} is an AB4 category and C is a \downarrow-finite small Π-category with $\text{wd}_C \Lambda^* Z = k$, then $L_r \colim_C: \mathfrak{A}^C \to \mathfrak{A}$ vanishes for $r > n + 1 + k$.
BIBLIOGRAPHY

