Deforming cohomology classes
HTML articles powered by AMS MathViewer
- by John J. Wavrik
- Trans. Amer. Math. Soc. 181 (1973), 341-350
- DOI: https://doi.org/10.1090/S0002-9947-1973-0326002-X
- PDF | Request permission
Abstract:
Let $\pi :X \to S$ be a flat proper morphism of analytic spaces. $\pi$ may be thought of as providing a family of compact analytic spaces, ${X_s}$, parametrized by the space $S$. Let $\mathcal {F}$ be a coherent sheaf on $X$ flat over $S$. $\mathcal {F}$ may be thought of as a family of coherent sheaves, ${\mathcal {F}_s}$, on the family of spaces ${X_s}$. Let $o \in S$ be a fixed point, ${\xi _o} \in Hq({X_o},{\mathcal {F}_o})$. In this paper, we consider the problem of extending ${\xi _o}$ to a cohomology class $\xi \in Hq({\pi ^{ - 1}}(U),\mathcal {F})$ where $U$ is some neighborhood of $o$ in $S$. Extension problems of this type were first considered by P. A. Griffiths who obtained some results in the case in which the morphism $\pi$ is simple and the sheaf $\mathcal {F}$ is locally free. We obtain generalizations of these results without the restrictions. Among the applications of these results is a necessary and sufficient condition for the existence of a space of moduli for a compact manifold. This application was discussed in an earlier paper by the author. We use the Grauert “direct image” theorem, the theory of Stein compacta, and a generalization of a result of M. Artin on solutions of analytic equations to reduce the problem to an algebraic problem. In §2 we discuss obstructions to deforming ${\xi _o}$; in §3 we show that if no obstructions exist, ${\xi _o}$ may be extended; in §4 we give a useful criterion for no obstructions; and in §5 we discuss some examples.References
- Jacques Frisch, Points de platitude d’un morphisme d’espaces analytiques complexes, Invent. Math. 4 (1967), 118–138 (French). MR 222336, DOI 10.1007/BF01425245
- Roger Godement, Topologie algébrique et théorie des faisceaux, Publ. Inst. Math. Univ. Strasbourg. No. 13, Hermann, Paris, 1958 (French). MR 0102797
- Hans Grauert, Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Inst. Hautes Études Sci. Publ. Math. 5 (1960), 64 (German). MR 121814
- Ph. A. Griffiths, The extension problem for compact submanifolds of complex manifolds. I. The case of a trivial normal bundle, Proc. Conf. Complex Analysis (Minneapolis, 1964) Springer, Berlin, 1965, pp. 113–142. MR 0190952 A. Grothendieck, Éléments de géométrie algébrique, Publ. Inst. Hautes Études Sci. Publ. Math. 1960-1970.
- K. Kodaira, On stability of compact submanifolds of complex manifolds, Amer. J. Math. 85 (1963), 79–94. MR 153033, DOI 10.2307/2373187
- Oswald Riemenschneider, Über die Anwendung algebraischer Methoden in der Deformationstheorie komplexer Räume, Math. Ann. 187 (1970), 40–55 (German). MR 261039, DOI 10.1007/BF01368159
- John J. Wavrik, Obstructions to the existence of a space of moduli, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 403–414. MR 0254882
- John J. Wavrik, A theorem of completeness for families of compact analytic spaces, Trans. Amer. Math. Soc. 163 (1972), 147–155. MR 294702, DOI 10.1090/S0002-9947-1972-0294702-5
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 181 (1973), 341-350
- MSC: Primary 32D15; Secondary 32C35, 32G05
- DOI: https://doi.org/10.1090/S0002-9947-1973-0326002-X
- MathSciNet review: 0326002