Fourier analysis on linear metric spaces
HTML articles powered by AMS MathViewer
- by J. Kuelbs
- Trans. Amer. Math. Soc. 181 (1973), 293-311
- DOI: https://doi.org/10.1090/S0002-9947-1973-0331455-7
- PDF | Request permission
Abstract:
Probability measures on a real complete linear metric space $E$ are studied via their Fourier transform on $E’$ provided $E$ has the approximation property and possesses a real positive definite continuous function $\Phi (x)$ such that $||x|| > \epsilon$ implies $\Phi (0) - \Phi (x) > c(\epsilon )$ where $c(\epsilon ) > 0$. In this setting we obtain conditions on the Fourier transforms of a family of tight Borel probabilities which yield tightness of the family of measures. This then is applied to obtain necessary and sufficient conditions for a complex valued function on $E’$ to be the Fourier transform of a tight Borel probability on $E$. An extension of the Levy continuity theorem as given by ${\text {L}}$. Gross for a separable Hilbert space is obtained for such metric spaces. We also prove that various Orlicz-type spaces are in the class of spaces to which our results apply. Finally we apply our results to certain Orlicz-type sequence spaces and obtain conditions sufficient for tightness of a family of probability measures in terms of uniform convergence of the Fourier transforms on large subsets of the dual. We also obtain a more explicit form of Bochner’s theorem for these sequence spaces. The class of sequence spaces studied contains the ${l_p}$ spaces $(0 < p \leqslant 2)$ and hence these results apply to separable Hilbert space.References
- Alejandro D. de Acosta, Existence and convergence of probability measures in Banach spaces, Trans. Amer. Math. Soc. 152 (1970), 273–298. MR 267614, DOI 10.1090/S0002-9947-1970-0267614-9
- Leonard Gross, Harmonic analysis on Hilbert space, Mem. Amer. Math. Soc. 46 (1963), ii+62. MR 161095
- M. A. Krasnosel′skiĭ and Ja. B. Rutickiĭ, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961. Translated from the first Russian edition by Leo F. Boron. MR 0126722
- J. Kuelbs, Positive definite symmetric functions on linear spaces, J. Math. Anal. Appl. 42 (1973), 413–426. Collection of articles dedicated to Salomon Bochner. MR 320750, DOI 10.1016/0022-247X(73)90148-0
- J. Kuelbs and V. Mandrekar, Harmonic analysis on certain vector spaces, Trans. Amer. Math. Soc. 149 (1970), 213–231. MR 301162, DOI 10.1090/S0002-9947-1970-0301162-2
- Michel Loève, Probability theory, 3rd ed., D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1963. MR 0203748
- L. Le Cam, Remarques sur le théorème limite central dans les espaces localement convexes, Les probabilités sur les structures algébriques (Actes Colloq. Internat. CNRS, No. 186, Clermont-Ferrand, 1969) Éditions Centre Nat. Recherche Sci., Paris, 1970, pp. 233–249 (French, with English summary). Avec commentaire en anglais par R. M. Dudley. MR 0410832
- S. Mazur and W. Orlicz, On some classes of linear spaces, Studia Math. 17 (1958), 97–119. MR 98319, DOI 10.4064/sm-17-1-97-119
- Yu. V. Prokhorov, The method of characteristic functionals, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II, Univ. California Press, Berkeley, Calif., 1961, pp. 403–419. MR 0133846
- Adriaan Cornelis Zaanen, Linear analysis. Measure and integral, Banach and Hilbert space, linear integral equations, Interscience Publishers Inc., New York; North-Holland Publishing Co., Amsterdam; P. Noordhoff N. V., Groningen, 1953. MR 0061752
- H. W. Ellis and Israel Halperin, Haar functions and the basis problem for Banach spaces, J. London Math. Soc. 31 (1956), 28–39. MR 74789, DOI 10.1112/jlms/s1-31.1.28
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 181 (1973), 293-311
- MSC: Primary 60B10; Secondary 28A40, 43A35
- DOI: https://doi.org/10.1090/S0002-9947-1973-0331455-7
- MathSciNet review: 0331455