Moment and BV-functions on commutative semigroups
HTML articles powered by AMS MathViewer
- by P. H. Maserick
- Trans. Amer. Math. Soc. 181 (1973), 61-75
- DOI: https://doi.org/10.1090/S0002-9947-1973-0396835-2
- PDF | Request permission
Abstract:
A general notion of variation of functions on an arbitrary commutative semigroup with identity is introduced. The concept includes Hausdorff’s for the additive semigroup of nonnegative integers as well as the more recent notions introduced for semilattices. An abstract moment problem is formulated and solved.References
- Garrett Birkhoff, Lattice Theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. 25, American Mathematical Society, New York, N. Y., 1948. MR 0029876
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- N. J. Fine and P. H. Maserick, On the simplex of completely monotonic functions on a comutative semigroup, Canadian J. Math. 22 (1970), 317–326. MR 257688, DOI 10.4153/CJM-1970-039-4
- J. Kist and P. H. Maserick, BV-functions on semilattices, Pacific J. Math. 37 (1971), 711–723. MR 306417, DOI 10.2140/pjm.1971.37.711
- G. G. Lorentz, Bernstein polynomials, Mathematical Expositions, No. 8, University of Toronto Press, Toronto, 1953. MR 0057370
- Stephen E. Newman, Measure algebras and functions of bounded variation on idempotent semigroups, Bull. Amer. Math. Soc. 75 (1969), 1396–1400. MR 251551, DOI 10.1090/S0002-9904-1969-12430-4
- Stephen E. Newman, Measure algebras and functions of bounded variation on idempotent semigroups, Trans. Amer. Math. Soc. 163 (1972), 189–205. MR 308686, DOI 10.1090/S0002-9947-1972-0308686-4
- Anthony L. Peressini, Ordered topological vector spaces, Harper & Row, Publishers, New York-London, 1967. MR 0227731
- J. A. Shohat and J. D. Tamarkin, The Problem of Moments, American Mathematical Society Mathematical Surveys, Vol. I, American Mathematical Society, New York, 1943. MR 0008438, DOI 10.1090/surv/001 D. V. Widder, The Laplace transform, Princeton Math. Series, vol. 6, Princeton Univ. Press, Princeton, N. J., 1941. MR 3, 232.
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 181 (1973), 61-75
- MSC: Primary 22A20; Secondary 44A50
- DOI: https://doi.org/10.1090/S0002-9947-1973-0396835-2
- MathSciNet review: 0396835