On certain homotopy properties of some spaces of linear and piecewise linear homeomorphisms. II
HTML articles powered by AMS MathViewer
- by Chung Wu Ho
- Trans. Amer. Math. Soc. 181 (1973), 235-243
- DOI: https://doi.org/10.1090/S0002-9947-1973-99929-3
- PDF | Request permission
Part I: Trans. Amer. Math. Soc. (1973), 213-233
Abstract:
In his study of the smoothings of p. l. manifolds, R. Thom considered the homotopy groups of a certain space ${L_n}$ of p.l. homeomorphisms on an $n$-simplex. N. H. Kuiper showed in 1965 that the higher homotopy groups of ${L_n}$ were in general nontrivial. The main result in this paper is that ${\pi _0}({L_2}) = {\pi _1}({L_2}) = 0$. The proof of this result is based on a theorem of S. S. Cairns in 1944 on the deformation of rectilinear complexes in ${R^2}$ and a theorem established in Part I of this paper.References
- Stewart S. Cairns, Isotopic deformations of geodesic complexes on the 2-sphere and on the plane, Ann. of Math. (2) 45 (1944), 207–217. MR 10271, DOI 10.2307/1969263
- S. S. Cairns, Deformations of plane rectilinear complexes, Amer. Math. Monthly 51 (1944), 247–252. MR 10273, DOI 10.2307/2304300
- V. K. A. M. Gugenheim, Piecewise linear isotopy and embedding of elements and spheres. I, II, Proc. London Math. Soc. (3) 3 (1953), 29–53, 129–152. MR 58204, DOI 10.1112/plms/s3-3.1.29 P. J. Hilton and S. Wylie, Homology theory, 2nd ed., Cambridge Univ. Press, Cambridge, 1962.
- Chung Wu Ho, On certain homotopy properties of some spaces of linear and piecewise linear homeomorphisms. I, II, Trans. Amer. Math. Soc. 181 (1973), 213–233; ibid. 181 (1973), 235–243. MR 322891, DOI 10.1090/S0002-9947-1973-0322891-3
- J. F. P. Hudson, Piecewise linear topology, W. A. Benjamin, Inc., New York-Amsterdam, 1969. University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees. MR 0248844
- Nicolaas H. Kuiper, On the smoothings of trangulated and combinatorial manifolds, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 3–22. MR 0196755
- James R. Munkres, Elementary differential topology, Revised edition, Annals of Mathematics Studies, No. 54, Princeton University Press, Princeton, N.J., 1966. Lectures given at Massachusetts Institute of Technology, Fall, 1961. MR 0198479
- R. Thom, Des variétés triangulées aux variétés différentiables, Proc. Internat. Congress Math. 1958., Cambridge Univ. Press, New York, 1960, pp. 248–255 (French). MR 0121806
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 181 (1973), 235-243
- MSC: Primary 57E05; Secondary 57C05
- DOI: https://doi.org/10.1090/S0002-9947-1973-99929-3
- MathSciNet review: 0322891