A Wedderburn theorem for alternative algebras with identity over commutative rings
HTML articles powered by AMS MathViewer
- by W. C. Brown
- Trans. Amer. Math. Soc. 182 (1973), 145-158
- DOI: https://doi.org/10.1090/S0002-9947-1973-0325722-0
- PDF | Request permission
Abstract:
In this paper, we study alternative algebras ${\mathbf {\Lambda }}$ over a commutative, associative ring R with identity. When ${\mathbf {\Lambda }}$ is finitely generated as an R-module, we define the radical J of ${\mathbf {\Lambda }}$. We show that matrix units and split Cayley algebras can be lifted from ${\mathbf {\Lambda }}/J$ to ${\mathbf {\Lambda }}$ when R is a Hensel ring. We also prove the following Wedderburn theorem: Let ${\mathbf {\Lambda }}$ be an alternative algebra over a complete local ring R of equal characteristic. Suppose ${\mathbf {\Lambda }}$ is finitely generated as an R-module, and ${\mathbf {\Lambda }}/J$ is separable over $\bar R$ ($\bar R$ the residue class field of R). Then there exists an $\bar R$-subalgebra S of ${\mathbf {\Lambda }}$ such that $S + J = {\mathbf {\Lambda }}$ and $S \cap J = 0$.References
- A. Adrian Albert, Structure of algebras, American Mathematical Society Colloquium Publications, Vol. XXIV, American Mathematical Society, Providence, R.I., 1961. Revised printing. MR 0123587
- Maurice Auslander and Oscar Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367–409. MR 121392, DOI 10.1090/S0002-9947-1960-0121392-6
- Gorô Azumaya, On maximally central algebras, Nagoya Math. J. 2 (1951), 119–150. MR 40287, DOI 10.1017/S0027763000010114
- William C. Brown, Strong inertial coefficient rings, Michigan Math. J. 17 (1970), 73–84. MR 263802
- W. C. Brown and E. C. Ingraham, A characterization of semilocal inertial coefficient rings, Proc. Amer. Math. Soc. 26 (1970), 10–14. MR 260730, DOI 10.1090/S0002-9939-1970-0260730-2
- I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc. 59 (1946), 54–106. MR 16094, DOI 10.1090/S0002-9947-1946-0016094-3
- Nathan Jacobson, Structure of rings, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, 190 Hope Street, Providence, R.I., 1956. MR 0081264, DOI 10.1090/coll/037
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856 S. Schafer, Introduction to non associative algebras, Academic Press, New York, 1966.
- M. F. Smiley, The radical of an alternative ring, Ann. of Math. (2) 49 (1948), 702–709. MR 25449, DOI 10.2307/1969053
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249, DOI 10.1007/978-3-662-29244-0
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 182 (1973), 145-158
- MSC: Primary 17D05
- DOI: https://doi.org/10.1090/S0002-9947-1973-0325722-0
- MathSciNet review: 0325722