New criteria for freeness in abelian groups
HTML articles powered by AMS MathViewer
- by Paul Hill PDF
- Trans. Amer. Math. Soc. 182 (1973), 201-209 Request permission
Abstract:
A new criterion is established for an abelian group to be free. The criterion applies to an ascending chain of free subgroups. The result is used to construct groups that are almost free but not free. In particular, we construct examples that show that the class of free abelian groups is not definable in the logical language ${L_{\infty \kappa }}$ if $\kappa \leq {\aleph _2}$. In doing so, we take advantage of a recent theorem of P. Eklof.References
- George M. Bergman, Boolean rings of projection maps, J. London Math. Soc. (2) 4 (1972), 593–598. MR 311531, DOI 10.1112/jlms/s2-4.4.593
- Paul C. Eklof, Infinitary equivalence of abelian groups, Fund. Math. 81 (1974), 305–314. MR 354349, DOI 10.4064/fm-81-4-305-314
- László Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970. MR 0255673
- Phillip A. Griffith, Infinite abelian group theory, University of Chicago Press, Chicago, Ill.-London, 1970. MR 0289638
- Phillip Griffith, A note on a theorem of Hill, Pacific J. Math. 29 (1969), 279–284. MR 245613, DOI 10.2140/pjm.1969.29.279
- Phillip Griffith, Extensions of free groups by torsion groups, Proc. Amer. Math. Soc. 24 (1970), 677–679. MR 257228, DOI 10.1090/S0002-9939-1970-0257228-4 —, ${\aleph _n}$-free abelian groups (preprint).
- Paul Hill, On the freeness of abelian groups: A generalization of Pontryagin’s theorem, Bull. Amer. Math. Soc. 76 (1970), 1118–1120. MR 263919, DOI 10.1090/S0002-9904-1970-12586-1
- Paul Hill, The purification of subgroups of abelian groups, Duke Math. J. 37 (1970), 523–527. MR 265456
- Paul Hill, On the splitting of modules and abelian groups, Canadian J. Math. 26 (1974), 68–77. MR 338217, DOI 10.4153/CJM-1974-007-6 —, Sums of cyclic groups, Lecture Notes, University of Arizona, Tucson, Ariz., April 1972.
- Paul Hill, The additive group of commutative rings generated by idempotents, Proc. Amer. Math. Soc. 38 (1973), 499–502. MR 316439, DOI 10.1090/S0002-9939-1973-0316439-2
- G. Nöbeling, Verallgemeinerung eines Satzes von Herrn E. Specker, Invent. Math. 6 (1968), 41–55 (German). MR 231907, DOI 10.1007/BF01389832
Additional Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 182 (1973), 201-209
- MSC: Primary 20K20
- DOI: https://doi.org/10.1090/S0002-9947-1973-0325805-5
- MathSciNet review: 0325805