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ON THE GREEN'S FUNCTION FOR THE BIHARMONIC EQUATION

IN AN INFINITE WEDGE

BY

JOSEPH B. SEIF

ABSTRACT.   The Green's function for the biharmonic equation in an in-

finite angular wedge is considered.   The main result is that if the angle   a is

less than   ai Ä 0.81277,   then the Green's function does not remain positive; in

fact it oscillates   an infinite number of times near zero and near  °°.   The method

uses a number of transformations of the problem including the Fourier transform.

The inversion of the Fourier transform is accomplished by means of the calculus

of residues and depends on the zeros of a certain transcendental function.    The

distribution of these zeros in the complex plane gives rise to the determination

of the angle   a.      A general expression for the asymptotic behavior of the solu-

tion near zero and near infinity is obtained.    This result has the physical inter-

pretation that if a thin elastic plate is deflected downward at a point, the resulting

shape taken by the plate will have ripples which protrude above the initial plane

of the plate.

blem

1.   Introduction.   In this paper we consider the Green's function for the pro-

AAzz = / in D,
(1.1)

u = du/dn = 0    on dD,

fot a certain two dimensional region D, where  A denotes the 2-dimensional La-

placian,  A = d /dx    + d /dy  .   The Gteen's function G(x, xQ) is the solution of

(1.1) where / = 8(x - xQ).   The Green's function solves problem (1.1) in the sense

that for any / the solution u  is given by the integral operator

u(x)= ¡D G(x,x0)f(x0)dx0.

It has the physical interpretation that if a thin elastic plate, clamped at dD,  is

given a unit load at the point xQ,  then G(x, xQ)  is the resulting deflection at the

point x  from the original plane of the plate.

This problem is related to several classical questions in the calculus of

variations.   Szegö [8] showed for the homogeneous problem (1.1) with / = 0, that

for all D  of given area such that the first eigenfunction has no nodal lines, the
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circle has the lowest eigenvalue.   A nodal line is a curve through the interior of

D  on which u - 0.

Numerical work by Bauer and Reiss [l] indicates that, for a square, nodal

lines appear near the corner.   Duffin and Shaffer [3] announced that for an annulus

with inner radius r. and outer radius  1, the principal eigenfunction has a diam-

etral nodal line  if  rQ is small enough.

Hadamard [5] has conjectured that the Green's function for problem (1.1) is

positive if D   is bounded and convex.   The physical interpretation is that a clamped

plate will be deflected downward under the influence of a downward point load.

Duffin [2] showed that G becomes negative if D  is an infinite strip.   Loewner

and Szegö (unpublished) have exhibited bounded regions for which the conjecture

is false, but these regions are not convex.   The statement is true for a circle.

Garabedian [4] has shown that for an ellipse whose major axis is not even twice

as long as the minor axis, the Green's function takes negative values.   This gives

a conclusive counterexample to Hadamard's conjecture.

Osher [7] has shown that if D  is the quarter plane, the sign of the Green's

function oscillates infinitely often as r —> 0 and r —> 00.

In this paper we generalize Osher's result to the case where D  is an infinite

wedge with angle  a,  0 < a < 77.   We find an angle a    at which the behavior seems

to change i.e. for  a < a    the behavior near 0 and °° is the same as in Osher's

case, but for  a. > a    the Green's function does not oscillate as we approach 0

or 00 along radial lines  (a ^ 0.812zr).   However, we have not yet been able to

show that the Green's function is actually positive for a > a    nor have we deter-

mined the behavior of G  for a = a

The idea of this paper is similar to Osher [7].   In §2 the problem is stated,

D  is mapped into an infinite strip and it turns out that the coefficients of the dif-

ferential equation remain constant.   Thus we apply a Fourier transform to one of

the variables to obtain an ordinary differential equation with constant coefficients.

To recapture the solution of the original equation we want to deform the path of

integration of the inverse Fourier transform into the complex plane and so, in §3,

we locate the poles with respect to the Fourier variable of the solution of this

ordinary differential equation.   In §4 we compute the residues at these poles.

This is the step that we have not yet succeeded in doing for  a = a..   Finally,

we state and prove our main theorems in §5.

It would be very interesting to find a direct physical intepretation of the

angle   o.

2.   Calculation of the solution.   The problem is now to solve

AAzz = fir, d),       0 < r < oo, 0 < 6 < a,

(2ll) u(r, 0) = «(r, -<x)= u'ir, 0) = zz'(r,-a) = 0.
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We are here referring to the X, V-plane in rectangular coordinates or the r, 0-plane

in polar coordinates.   We make the complex change of variables for Z = X + iY:

- In Z = 77 + iC, or

(2.2) Z = e-(r?+^),       X = e-77cosC,       Y=e-vsinC

The equation (2.1) then becomes

(2.3) (d2/dV2 + d2/d£2)((d/d1 + 2)2 + d2/d£2)u = e-A-og{e-V cos^-r" sin O

with f(r, 0) in the region - °o < 77 < + oo, - a < £, < 0  and the boundary conditions

zz( 77, 0) = {¡(r/, - a) = û Ar¡, O) = û Ar¡, - a) = 0.   We now apply a Fourier transform

with respect to r?,  and call the new variable k.   The equation now becomes

(2.4) (d2/d£2 - k2)(d2/dC2 + (ik + 2)2)v(k, 0 = h(k, O

where  v(k, 0 = J   u(n, <¿) is the Fourier transform of zz,  where

h(k, O = '5e-^g(e-^ cos (, -e'71 sin O

with the boundary conditions v(k, O) = v(k, - a) = v (k, O) = v'(k, - a) = 0 (here "   " de-

notes differentiation with respect to Q.   This approach was used by Kondrat ev

[6]   in his work on more general elliptic equations in conical regions, and by

Osher in [7].

So we have now transformed our equation to an ordinary differential equa-

tion with constant coefficients.   The roots of its characteristic equation are

± k   and  ±(& - 2z).   The solution is given by

(2.5) v(k, O = vQ(k, O + vQ(k, -a)(sinh ¿£/sinh ka) + CH(k, O + DH(k, C+ a)

where

(2.6) H(k,0 ^-S^è^2llCt sinh K + sinhU - 2i)&
sinh ka.

and

(2.7) vAh, O = i f{ h(t) fsÍPh k{t t'a). - ^hik-2iXt-Ci\
0 4 Jo I    k{k_i) U-2f)tt-i)     J

is some solution of the inhomogeneous equation.   (2.5) also automatically sat-

isfies the boundary conditions v(k, O) = v(k, - a) = 0 and we must choose C and

D  so that the remaining boundary conditions are satisfied.   We solve a system of

two linear equations

H'(0)C + H \a)D = -   . h    ■  vA- a),
sinh ¿a    0

H'(- a)C + H'(0)D =-v'0(~a)-k coth kavA- a)
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(here and elsewhere we suppress the k dependence of C, D, ß,  and vQ).   We

denote by E(k) the determinant of this system i.e. (using the fact that H (- a) =

H'(a))

E(k) = [H'(0)]2-[H'(-a)]2

(2.8)
. sinhU - 2z')a   r,        -\2    •  2 „       • u2z>      -\„i

- _4-L(fe - z)   sin    a - smh  U - z)a.J
sinh ka

(see the Appendix for this computation).   We now get

kvA-a)
C = —A [(-ß'(O) + ß'(a) cosh ka) -4-°—r~ + H'(a)v'A-a)\,

E(k) L Slnh ka J

D = -i- \(H'(a)-H'(0)coshka) -^V,— - ß' (O)w' (-a)] .
EU) L sinh ka J

We summarize these tesults in

Lemma 2.1.   The unique solution of problem  (2.4) is given by equations

(2.5M2.9).

Our object is now to examine the solution of the original problem (2.1) by

applying the inverse Fourier to the solution of (2.4). We shall see below that

the asymptotic behavior of this solution depends on the poles of v(k, <£) as an

analytic function of k,  in particular on the zeros of

(2.10) p(k) = (k - z)2  sin2a - sinh2U - z)a.

We shall find these zeros in the next section.

3.   The zeros of p(k).   We shall locate the zeros of p(k) in the complex

plane or, equivalently and more simply, we shall locate the zeros of

(3.1) q(z) = z2 sin2 a - sinh2 az

where  a. is fixed,  0 < a. < n.

Lemma 3.1.   The zeros of q(z) are symmetric about the origin and the real

axis (and hence also the imaginary axis) in the complex z-plane, i.e..

(3.2) q(z)=0

if and only if (a)   q(- z) = 0 and (b)  q(z ) = 0.

The proof is immediate from the defining equation (3-1).

Because of Lemma 3.1 we need only look for the zetos of q(z) in the first

quadrant, so if we set z = s + it we may assume that s > 0 and t > 0.   Also it

is obvious from equation (3.1) that  q(z) has purely imaginary zeros at  0,   ±z.

We shall show that for a < a    (defined below) these ate the only imaginary roots,
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while for  <x > a    there are other imaginary roots.   The asymptotic behavior of

u(r, 0) as r —> 0 and  as  r —> oo depends very heavily on which of these cases

occur.   At this point it will be useful to familiarize ourselves with the behavior

of the function   |(sin u)/u\.

Fiigure 1

We note that this function is positive in each interval of the real line (nn,

(n + \)n).   It is zero at the endpoints of these intervals.   Within each such inter-

val the function attains its maximum at a single point  <f ,  and this is the only

critical point in the interval.   Each point  <f    satisfies the transcendental equa-

tion

(3-3) ¿f   = tan cf .

The maximum of |(sin u)/u\ in each of these intervals decreases with increasing

n and has the value cos çf . The values cf approach the midpoints of the inter-

vals with increasing n. The first of these points, i.e. the solution of (3.3) lying

in the interval  (n, 2tt), we call  cf or cf = if..

Definition 3.2. is the unique solution in the interval  (0, n) of

(3.4) o.      sin «j =-<f      sin£

where ¿f = <f:   is the unique root of (3.4) in the interval  (n, 27t) (a   S 0.812rr).

More generally, we define   a^  to be the unique solution in the interval (0, 77) of

(3.5) a'1 sin \ = (-!)"& sin €n

where  f   is the unique root of (3.3) in the interval  (nn, (n + l)n).   (Note,   a    <

a   < . . .   and  a
2 r.

n as  n ».)
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Location of zeros of p(k) in the complex plane

!i    •

^

• k = k(,2)

k = (2u/a + l)i

- k = (77/a+ 1),

2,

k = i

0

. k = (- 77/a + 1);

• »-At""

k . (_ 27r/a + l)i

4a(i»

-^

• ¿(t2)

*{-n

*<-2'

® » = *i

^

• k = k\(2)

($A L(-I>

»-A^-2'

0 simple zero

(S) double zero

Figure 2
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Lemma 3.2.   q(z) has the following zeros and no others:   For all  a, z = 0 is

a double root and z = ±z   is a simple root.   For the other roots (now considered

only for s > 0,  t > 0) we have the following cases:

Case I. // a < a there is one simple root z = s + it in each strip nn/a <

t < (n + 1/2)tt/o., n = 1, 2, 3, • • • , with s = Re z > 0. (Of course there are also

the three symmetric roots given by Lemma 3.1.)

Case II.   // a   < a < a, ièere are z^o simple purely imaginary roots in

each interval nn/a < t < (n + l)n/a, n = 1, 2, 3, • • • » k, and (as in Case I) a sim-

ple complex root with  Re z > 0 zrz each strip nn/a < t < (n + l/2)n/a, n = k + 1,

£ + 2,.

Case HI.   // a = a    /¿erz a(z) has a double root at z - ¿; i/a,, two simple

purely imaginary roots in each interval nn/a < t < (n + l)n/a, n = 1, • • • , k - 1,

and a simple root with  Re z > 0 zrz each strip nn/a < t < (n + l/2)n/a, n = k + 1,

¿ + 2, .....

Proof.   1.   It is immediately obvious that 2 = 0 is a double root, and z = ±z

is a root for any a.

2.   To find the complex roots we obtain from (3.2)

(3.6) z sin a = + sinh az.

We write the real and imaginary parts of (3.6) to get

(3.7) s sin a = ±sinh as cos ai,

(3.8) z sin a = ±cosh as sin ai.

Now (3.8) gives

(3.9) cosh as = ±(t sin a)/sin at

which tells us immediately that

(3.10) ±(t sin a)/sin at > 1.

In particular (3.10) implies that ¿sin at > 0,  so that if we take the + sign in (3.6)

we have 2nn < at < (2n + 1)77 and if we take the minus sign (2n - l)n < at < 2nn

fot some rz.   Now (3.9) yields

(3.11) s = a-1 cosh_1(±(« sin a)/sin ar)

where we take the positive branch of cosh"    since we are assumming that s > 0.

Then

sinh as = y/((t sin a)/sin at)2 - 1

where again we take the positive square root since s > 0.   Then we can write

(3.7) as
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(3.12) L cosh-^iM^y  /fllk^y _ 1 cos at = 0
a V    sin at)    V Vsin at J

where, to be consistent, we take either the upper signs or the lower signs together.

Let us first examine the case of the upper signs.   We have to solve

(3.13) T(t) = cosh" l (UÛ2-a?) _ fLkkLÇL _ i cos at = 0
\sin at /    V  sin at

for  2n?7 < at < (2/2 + l)n.   Now if a < Oj, then (sin a)/a > (sin at)/at (see Fig-

ure 3.1) and (t sin a)/sin at = ((sin a)/a)/((sin at)/at) > 1.   More generally, if

a < a2k, then (t sin a)/sin at > 1   for 2«77 < Of < (2« + 1)77 with n > k,  so that

the right side of (3.13) is continuous with continuous derivative for t e (2nn/a,

(2w + 1)77/0.).   We now examine  T(t) at the points t = 2nn/a, (2n + l/Ç)n/a and

(2r2 + 1)77/0..   At  2nn/a both terms tend to + °° but the cosh" "  term grows only

logarithmically so that it is dominated by the square root term.   Since cos (27277) =

1,  T(t) —> - °o for t —> 2nn/a.   At / = (2/2 +-, ]4)n/a,  T(t) > 0,  since cos at = 0.

At t = (2»2 + 1)77/0,  cos or = - 1,  so that  T(t) —» + °o as t —> (2n +- 1)77/0.   Hence

by the intermediate value theorem, we have a root for 2nn/a < t < (2re + lA)n/a.

To see that this is the only root in that interval, we examine  T (/).   To this end

we let fit) - (t sin a)/sin at.   Then

/ '(<) = sin_Q-cos^i (tan at _ at)
sin    at

and

T'it) =-1-["siîLÇL (1 _ ai £°JL«\ /' + a(/2 - l) sin at]
yjfl~l L     a    V sin at J J

= -1-— sin,2 a cos2 a¿ (tan a< _ a/)2 + a(/2 _ r>) > Q

vF- 1      sin at

Thus if a < o.    there is only root in the strip 2nn < at < (2« + 1)77, and this

root actually lies in the strip 2nn < at < (2ra + ]/Ç)n.   Also equation (3.11) shows

that s = Re z > 0.

By the same reasoning, if we take the lower signs in (3.12), we see that if

a < a2 j there is exactly one root in the strip (2n - 1)77 < at < 2nn with s =

Re z > 0.

3.   Now the above argument breaks down only if /(/) = 1 which implies that

s = 0 by (3.9).   Now looking again at the + sign in (3.6), we see that for s = 0

(3.6) becomes   (sin at)/at - (sin a)/a and we see from Figure 3.1 that this occurs

only if a > a,    and 2nn < at < i2n + 1)77,  in which case we get two roots in this

interval, unless  a = a2    in which case we get one root, namely at = A  •   Again
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if we take the — sign in (3.6) we get the same behavior in the interval (2k - l)rr

< at < 2nn.

4. To check the multiplicity of the roots we need only check the multiplicity

of the roots of the equations (3.6) z sin a - ± sin az since we have seen that the

roots of these equations do not coincide.   So looking at the + sign we get a mul-

tiple root if and only if

(3.14) d(z sin a - sinh az)/dz = sin a cosh az = 0.

Now in order that (3.14) hold,  cosh(az) must be real, which can happen only if

s = 0 or at - nn.   The latter possibility we can ignore since we have found no

roots with / = nn/a.   Thus the only possible double roots are imaginary.   Then

plugging (3.6) into (3.14) we get at = tan at = £     so that we get a double root if

and only if a = a,  , and then only at the point t = f2 /a,  .   If we take the -

sign in (3.6) we set a double root at  / = ¿f-,      ,/a.,      ,   for  a = a.
° 6 '2»i—1       2rz-l 2n-I

5. To show that no roots have multiplicity more than two, we differentiate

(3.14) again, getting - a    sin az = 0 which cannot happen for any of the roots we

have found.   This concludes the proof of the lemma.

4.   The residues.   We now have, from §2, the Fourier transform of the solu-

tion we are seeking, so we must now apply an inverse Fourier transform with re-

spect to k to the function v(k, ¿) defined by equations (2.5—(2.9).   To obtain the

information we need, we shall want to deform the path of integration in the inte-

gral of the inverse Fourier transform and pick up the residues of the function

e1  7,v(k, Q,  at the poles included in the path of integration in the complex A-plane.

We shall assume now that the function  e'  ^h(k, ¿)  is analytic.   This assumption

will be justified below.   Now, looking at the equations (2.5)—(2.9), we see that

the only possible poles of e1  r,v(k, Q ate at the zeros of sinh ka,  sinh(k — 2i)a,

and p(k).   (Note, in particular, that v Ak, ¿)  defined by (2.7) is analytic for all

k.)   So we need to examine the residues of elkr,v(k, Q at the points  k = nni/a,

(nn/a + 2)z, and at the zeros of p(k) as found in the previous section, i.e. at the

points  k = z + i where  z  is a zero of  q(z).

Lemma 4.1.   v(k, ¿)   is analytic in k at k = i.

Proof. The only possible pole is due to the double root of E(k) at h = z.

Now for k = z,  H(¿) and H (¿) are identically zero so the numerator over E(k)

has a double zero.   Thus the quotient is analytic.

Lemma 4.2.   The residues of e'kr,v(k, Q at  0, 2z,   are zero.   In fact,  v(k, 0

is analytic in  k at these points.
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Proof.   We first assume that  a /. n/2.   The first two terms on the right side

of (2.5) are clearly analytic at  0 and 2z.   Now at  0 we have

E(0) = (-8z'(sin 2a)/a)(tan a - a) / 0,

so that that there is no singularity there.

At k = 2z,  Eik) has a double zero (one from pik) and one from sinhU - 2z')a)

but the numerator also has a double zero which cancels.   Perhaps this can be

seen most clearly by examining equation (4.1) in the proof of the next lemma.

If a = 77/2, then we have the case already dealt with by Osher in [7].   At

k = 0 the only possible contributions are from the last two terms of (2.5) and they

are easily seen to vanish.   At k = 2z there is also a contribution from the second

term but it cancels with the contributions from the last two terms.     Q.E.D.

Lemma 4.3.   The residues of e'k7,vik, 0 at k = nni/a,  and at k =

inn/a + 2)i, n = ±1, ±2, • • •, are all zero and, in fact,  vik, ¿)  is analytic at

these points.

Proof.   We first rewrite the expression CHik, tQ + DHik, ¿,+ a) in a form

that groups together all the numerators of the same zero denominators i.e.

CHik, 0 + DHik,C+ a-)

= -f—. -{(something analytic)
pik) I

+ sinhTä ^~k^k " 2z')f0(-o)[(coshU - 2z')a cosh ka- l) sinh k£

+ (cosh(¿ - 2z')a - cosh ka) sinh kiÇ, + a)]

'' + k sinhU - 2i)av'Qi-a) sinh ka cosh k£]

(h —  ?)
+-y--— [U(cosh(¿ - 2z)acosh ka - l)vn(-a)

sinh ik - 2i)a °

+ cosh(¿ - 2z')a sinh kav'A-a)] sinh ik - 2z)íC

+ U(cosh ik - 2i)a - cosh fco)u0(- a) - sinh iau'(- a)]

• sinh U - 2z')(<A a)]l.

Now at k = (7277/0 + 2)z we need only consider the last of these three expres-

sions and using the identities

sinh ka = ¿(- l)" sin 2a,     sinh ik - 2i)a = 0,
(4.2)

cosh/éa = (-1)" cos 2a,     cosh ik - 2i)a = (-l)",

we see that the two brackets in this expression cancel each other out.

At k = nni/a we consider the second expression in the sum and use the

identities
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,. ,x sinh ka = 0, sinh (k - 2i)a = -z(- l)" sin 2a,

cosh ka = (- 1)",      cosh (k - 2z)a = (- l)" cos 2a,

to compute the residue of (4.1).   We get

_1        t   /.\ V--1)" nn (nn     -A    .   2 „   ■  , (nmC\    i
p(^n7M){~4)-^-^{--2)Sln    a-nh(^->o(-a'

(-1)"(-1)"     . ./nm£\     ,
--â-smh^-^JvA-a

To this we add the residue at k = nni/a of the term [(sinh &£)/(sinh ka)]v A— a)

and get zero.    Q.E.D.

In the next lemma we shall need the following identities which are immediate

from equations (2.6) and (2.7).

(4.4) H'(0) = _L§ÍJlhiÍ^J?l^ +(k- 2z),
sinh ka

(4.5) .„U,-a) = -J—   f~a [Slnh \{l - C± - SÍnhV 2')U - °] h(k, t)dt
0 4(k - z) Jo    L        k k~2t J

(4.6) v'Ak,-a) =-!- f"a [-cosh ¿0 - O + coshU - 2i)(t - (ÏÏUk, t)dt.
0 4U-Z')-'0

Lemma 4.4.   Let  k be a simple root of p(k) - 0 such that  Re k > 0 arza" ¿ ^

0, 2Î.   Tierz ièe residue of e    r,v(k, Q at k  is given by

res   e'^t/tt, ¿) = ÍÜ2) /- j       ?inh *a      [W«) ± H(l + a)])
i = £ P'(£)\    4 sinh(£.- 2i)a /

i_r-a |~Ê(-1 T cosh £a)/sinh £(z  + a)    sinh(£ - 2;)(z + aj\

(4.7) 4(î-i'W°    L       sinhîa V k Î - 2i /

+ (-cosh î(z t a)+ cosh(î - 2<X/ + a))   ■ c'*71

. j       £>-'*"-4t'g(<.-1' cos (i _e"" sin ùdvdt.

Proof.    We first note that

(4-8) res v(k, Q = res [CU)tfU, 0 + DU)W(-fe, £ + a)]
kAk kAk

since the other terms are analytic at such a zero.   Now let  C and  D respectively,

be the numerators of C and  D in equation (2.9), i.e.

C = -. * ,    (-tf'(O) + cosh *a/i'(a))i;n(-a) + r/'(aV (- a),
sinh ka oo

(4.9)
D = -~-r- (W'(a)-r/'(0)cosh^a)z;fl(-a)-/v'(OV;(-a).

sinh tó o o
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Now (4.8) yields

(4.10) res vik, 0 =     C^)^, Ç) + bik)HJk, Ç+a) ^
k=k [i-4 sinh ik - 2i)a)/ sinh ka]p' ik)

Now if pik) = 0, then Eik) = 0 and then from (2.8) we see that

(4.11) ß'(a) = +ß'(0).

(This equation is really the same as (3.6) with the same consistency of upper and

lower signs.)   Thus (4.9) becomes

(4.12)

C'líñhk~E (~1 +cosh ka)v0{-a)+v'0(-a),

D = -kiÙSL (+ 1 - cosh ka)vA-a) - v'i-a) = ±C,
sinh ka u u

so that (4.10) now becomes

(4.13) res vik, O =    C(¿)(fí(¿' ° ± »ik, Ç + a))

k =k [i-4 sinh ik - 2z)a)/ sinh ka]p 'ik)

We now use (4.5) and (4.6) to get

C(k) = H'(0)      ' ft A 1 + cosh *°-) ["sinh k(l + a) _ sinhÛ - 2i)(/ + a)"j

4(Í-I)-'0     j       sinh fa Ik k - 2» J
(4.14)

+ [-cosh Ht + a) + cosh(A 2iXr + a)UM¿, t)dt

and together with the definition of h(k, t) from (2.4a), i.e.

hik,t)=  [*" e-ikv-Avgie-vcos t,-e~v sin t)dt

we obtain the result (4.7).     Q.E.D.

We shall now show that if k+ and k are roots of pik) with k + = k^+- ik2,

and k - - k. + z'A, where &j > 0, then the sum of the residues of el vvik, £)

at k+ and at k is pure imaginary for real /. Moreover, for all but a finite num-

ber of £ for which it vanishes, this sum oscillates sinusoidally in log r as k2rj

—» °° for fixed £. However, if k is a purely imaginary simple root of pik), then

the corresponding residue decays without change of sign as   k2r¡ —» <*>,

Lemma 4.5.   Let  k    be such that e ¿Ke~T' cos z, e-7' sin t) is smooth,

real and belongs to  LA- co, <») for each t,  0 < t < a,  and does not vanish iden-

tically.

(a)   If k + = k. + ik2,  k.>0,  is a root of pik),  then the sum of the residues

eA(£, <£) at  k . and k^ = — k. +■ zA  zs pure imaginary and has the oscillating
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property mentioned above.   More precisely, we have

(4.15) £   tes eikT1v(k, O = 2i Ke[e'k^F(k+, 01

k=k±

(b)   // k = ik-  is an imaginary simple root of p(k),  k ^ 0, 2z,  then the residue

at  k  is pure imaginary and has the decay property mentioned above.   More pre-

cisely , we have

(4.16) res eik7>v(k, O = ieik^F(k, £)•

In either case  F(k, ¿)   is given by

F(k, O =    -«'Wtirt**      MO ±h(C+ a)] . -L-
16U - f)sinh (k - 2i)a      S * p'(k)

(4.17) _  C-a f~£(-l + cosh ka) /sinh fe(< + a) _ sinh (fe - 2z')(t + a)\
Jo "   sinh ka \ k k - 2i )

+ (-cosh k(t + a) + coshU - 2i)(t + a))\

■  f°°   e-ikv-Avg(e-v cost, -e~v sin t)dvdt.
J -OO

Proof.   In part (a) it first has to be shown that the sum of the residues is

imaginary.   We examine the expression in equation (4.7) with k replaced by — k .

We notice that

(4.18)

sinh(-& )a = -sinh ka,       sinh(-¿ - 2z')a = -sinhU - 2z)a,

cosh(-4)a = cosh ka,        cosh(-fc - 2z')a = -cosh(£ - 2z)a,

H(-k, O = -hU, O, «'(-*. O = -w'(¿' O,

eH-k)V=eikVj p'{-k) =-p{k).

Using these relations we see that the residue in (4.7) satisfies

(4.19) res   = -res

and thus the sum is imaginary.   Also, we can easily see that if k is imaginary

then the right side of (4.7) is imaginary.

It now remains to be shown that  F(k, Q vanishes at most for a finite number

of £.   Suppose this were false.   Then either H (k, 0) = 0, or at least one of the

functions on the right side of (4.17) enclosed in the square brackets must be iden-

tically zero.   Now if H'(0) = 0, then we see from (4.11) that

H'(a) = * "°M*.- 2')q [-cosh ka + coshO - 2i)a] = 0, .
sinh ka '

but this is impossible for the k's we are considering.   On the other hand, the
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functions in the square brackets are both linear combinations of the four functions

sinh kt, cosh kt,  sinh(fe— 2z')f, cosh(& - 2z')i (in the case of the second of these

two functions; the first is a function of 0.   The Wronskian of these functions is

computed to be   16(& - i)   kik - 2z) so that they are linearly independent unless  k =

0, z, 2z. Since this is not the case they cannot be identically zero.   Hence  Fik, $

can only vanish for a finite number of £,.

Remark.   Fik, ¿) can be written in terms of 6 and fir, 6) as follows:

^'-^iTA^^i^^^^^-^^m^.a),

(4.17*) 1    [*(-! -(-!)" cosh ¿tt/sinhKa-6,)      sinhtt - 2¿Xa - 0,)\

i>'U)L sinh ta \ I JT» /

-(-l)"(-cosh Jt(a - 0j) + coshU - 2i)(a - ö,))]^*''*/^, 0,)"].

The  'n' appearing in this equation refers to the strip in which k lies, i.e. 7277/0

+ 1 < Im k < in + 1)77/0 +1  for Im k > 0,  and - (n + 1)77/0 + 1 < Im k < - nn/a + 1

for Im k < 0.

5.   The asymptotic behavior of uir, 9).   We have now completed the calcula-

tions necessary to find an asymptotic expansion for the inverse Fourier transform

of vik, £).   However, since our formulae for the function v(k, ¿} involve terms

which grow exponentially with large k, we must show that the inversion may

actually be performed.   To this end we state the following lemma but leave the

nasty details of the proof to the appendix.

Lemma 5.1.   vik, ¿) can he written as a sum of a finite number of terms, each

of which looks like

where B(k, £, /)  z's bounded whenever Im k fixed and k  is not a root of pik).

Qik) grows like  k    for large  k.

Lemma 5.2.   Let fir, 6) be such that r fir, 6) is in L2 of the a-wedge

for all k    with  6<k2<k'    i.e.

(5.2) fa p [r3-*2/(r, 6)Yrdrdd,
Jo  JO

then the function e{k2~*)Vgie~v cos £, - e~v sin 0, is square integrable in 77

for almost all 0. iHere, giX, Y) = fir, d) according to the transformation (2.2).)

Moreover, the Fourier transform
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(5.3) M¿,0=/^loe~^*î7'e~4Ve-7, cosC-e"7* smOdr,

has an analytic extension in k = k   + ik. for  k7 < k?.

The proof is obvious.

Lemma 5.3.   Let f(r, 6) be as in Lemma 5.2, and let v(k, ¿) be defined by

(2.5)—(2.9).   Then the inverse Fourier transform of v(k, Q  exists

(5-4) Û(r,, O = ¿ f°°   e^v(k,Odk
¿n J -oo ^

and is a solution of the differential equation (2.3) viith its boundary conditions.

Moreover, we have

(5.5)    u(r¡,0 = '      Z       tese'kr'v(k,0 + 0((e-^)k"+f) (e~^ — 0),

0<k2<k2

where the sum is taken over all roots   k = k, + ik?  of p(k) = 0,  szzc¿ that  0 < k2

<k2n) <k2   and e> 0.

Proof.   The existence of the integral is guaranteed by Lemma 5.1 and the

analyticity of the integrand by Lemma 5.2.   Thus we can deform the path of inte-

gration into the upper half plane to include the all the poles of the integrand with

imaginary part less than k7 .   Again, the bounds from Lemma 5.1 guarantee the

estimate on the growth as  e~TI = r —> 0.     Q.E.D.

3 — k j
Theorem 5.4.    (a)   // r f(r, 6)  is in  L.   of the a-wedge for all k2 with

0 < k    < k ' i  then the following asymptotic behavior for the solution u(r, 6) of

problem (2.1) z's valid:

\u(r, 0) +  £

2 Z Re[r_^+;FU(+'),-0)]~Uo   cue.

lim T^ [""(', 0)+ Zr-ikU)F(l

(5.6)

where the first sum is taken over the purely imaginary roots of p(k) which exist

if a > a, (see Lemma 3.2), and the second sum is taken over the complex roots

with positive real part. Both sums are taken over those roots whose imaginary

part satisfies 2 < k2 < kJ1' < k '. (We note that the imaginary part of the roots

in the first sum are less than the imaginary parts of each root in the second sum

so that their behavior dominates as r —• 0.) F(k, Q is defined in (4.17) and the

determination of the ± signs is (— l)m, where the root lies in the horizontal

strip  mn/a + 1 < Im k < (m + l)n/a + 1.
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(b)   // r fir, 6)  is in  L2  of the a-wedge for all k2 with  0 < k2 < k",  the

we have the following asymptotic behavior of uir, 6) for large r:

lim r
r-»oo

(5.7)

lim r   *2       \uir,d) + £r-'k(   'W"0, -6)

-ik(-j) 1
+ 2^Re[t      +   Fik(-'\-d)]   =0   o.e.

where the same discussion as in part (a) holds except that now the sums are over

the roots with negative imaginary part and we sum over the roots which satisfy

0 < _ *<-«') <_ *<-/) < _ *<-■) < k".

Proof.   The proof of part (a) follows directly from Lemmas 5.3 and 4.5.   To

prove part (b) we use a lemma exactly like Lemma 5.3 except the contour is now

deformed to the lower half of the complex plane.   The details are omitted.    Q.E.D.

Theorem 5.5.   (a)   // a < a,  as defined in Definition 3.2, then the Green's

function for Problem (2.1) G(r, 6, r_, 6„),  changes sign an infinite number of times

as r/rn —> 0 and r/rQ —» co, except for perhaps a finite number of 6 and 6n.

(b)   // a > a.   then the Green's function does not change sign if r/r.  is suf-

ficiently large or sufficiently small while   6 and A remain fixed.

Proof.    Choose the function fir., 6.) to be equal to   1  on some set such as

r-(<r.<r+-(,   6 - ( < 6. < 0 + (,  where  f  is chosen so small that the kernel

multiplying / in (4.17 ) does not change sign in that set, the k we choose is the

first zero, i.e. the one with smallest imaginary part in the interval 77/a + 1 < Im k

< 2n/a + 1,  and use only the term corresponding to this zero in the expression

(5.6).   We see that if a < a.  then k has a positive real part and so  G oscillates

with decaying amplitude as r —> 0.   If, on the other hand,  a > a., then the only

term appearing has  r with a real exponent and thus no change of sign takes place

as  r —> 0.

The same  argument, using (5.7) works as  r —> co.     Q.E.D.

APPENDIX

Al.   Computation of equation (2.8) for  Eik).   We have from the previous sys-

tem of linear equations the determinant

EU)=[ß'(0)]2 + [ß'(a)]2.

Now from (2.6) we see that

H'ik, O = 4- Hik, O = -* S"h(,* " 2,')a cosh kC+ik- 2z) cosh a - 2:)C
dQ sinh ka
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so that if we set z = k — i,  then  k = z + i and  k — 2i = z — z,  we get

tf'(O) =-jí-—- (z cosh az sin a + sinh az cos a),
sinh (z + z')a

fi'(a) = —-j-1---— (z sin a cos a - sinh az cosh az).
sinh (z + z)a

Squaring these two expressions gives us

[tf'(O)]2 =-^_ [22 cosh2 az s¡n2 a
(sinh (z + z')ar

- 2z sinh az cosh az sin a cos a + sinh  az   cos    a],

[//'(a)]2-4 [z2sin2 acos2a
(sinh(z + i)a)¿

- 2z sinh az cosh az sin a cos a + sinh az  cosh   az]

and putting these two together we get

[H'(0)]2 - [H' (a)]2 * ---4-_ [z2 sin a(cosh2 az - cos2 a) +
(sinh(z + z')ar

+ sinh2 az(cos2 a - cosh2 az)]

(z2 sin2 a - sinh2 azKcosh2 az - cos2 a)
(sinh(z + z')a)2

, sinh(z - z')a  ,  ->    .   7 -,      .
.4-.-^ (z¿ sm¿ a - sinh   az)

sinh (z + z)a

as was to be shown.

A2.   Proof of Lemma 5.1.   We have the function

v(k, O = vAk, O + vAJk, -a) £iljL^Í + CH(k, O + DH(k, C+ a).
u u sinh ka

We first rewrite the first two terms of this expression

,sinh kÇ
vAO + vA-a).
V' T "o sin ka

(1)   -   i   f ^  cosh ¿^ + £ + a) ~ cosri &(<-£- a) ¿(,)j,

" 8 Jo k(k - i) sinh ¿a

... ,■ sinh A¡£   r-a f~sinh k(t + a)      sinhU - 2i)(t + a)' ■

4 sinh ka

r-a Tsinh k(t + a)      sinhU - 2i)(t + a)"j

J ?  L  *u -Ti        (¿ _ zX^ri;~J '
... i   rZ TsinhU - 2i)(t - O sinh ka + sinhU - 2z)(< + a) sinh kÇ~[   , ,

~ 4 Jo   L ~k - i)(k - 2z) sinh ka J

Now we observe that the terms labeled (1) and (2) already satisfy the conclusion

of Lemma 5.1.   The quadratic term is in the denominator and to show that the
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rest of the kernel of this integral is bounded we use the trigonometric identity

cosh kit + C + a) - cosh kit - C - a) = 2 sinh kt sinh ki£ + a)

and when we write this out in terms of exponentials we see that this grows (for

positive  k) at most like  exp ki- t + £, + a) and when we divide by sinh ka we are

left with a growth of at most exp ki- t + 0 and since  0 < - t < - £,, this term

must be bounded.   For negative  k,  the same argument applies.   The same kind of

argument also shows that each term in (2) is bounded.   In (3) the terms do not re-

main bounded until we get some cancellation from some othet terms.   Now we can

easily see that the term Dß(£ + a) satisfies the conclusion of the lemma so we

now need worry only about the term (3) and the term Cß(<P.   We now look at the

growth of this latter term.   We see that ^0(- a) grows like exp kit + a)/k2 and

v A— a) grows like  exp kit + a)/k so that since  Eik) ^ exp 2k we have  C ~

exp kit - 2a) + (exp kit))/k and since  H~i£) ~ exp(- kÇ), we get for the term in

question

CHiO ^ exp kit -C- 2a) + (exp kit - £))/»

for k > 0.   Now since  0 < - f, - £< a, we see that all the expressions here are

bounded except for the terms giving rise to expressions with order of magnitude

(exp kit - £))/& and then only the part of the integral where  Ç, < t < 0.   This leaves

us to examine the exptession

H(Ç)iH'(a.)     fÇ LlA [L    __L sinh kit + a)      sinh ik - 2i)(l + a)O'H  a     fC ,. .r,
—¿-- bit) \k cosh k~

4(k - ¡)sinh kaJo |_ * k - 2/

+ sinh ¿cx(-cosh k(t + a) + cosh (k - 2i)(t + a))\dt  E(k)

4 sinh ka(k -
-    f   —■—   (cosh ¿a sinh kit + a) - sinh £acosh kit + a)
) Jo Eik)  I

--r-£— cosh ifeasinh ik - 2i)it + a) + sinh ka cosh (¿ki- 2¡)(r + a)\dt
k - 2/ J

iH'(a)H(í)     ft ,, .r sinh tí k      sinh [*z - 2¿(í - a)] , .u ."]
= -2— hit)     ^-c-,-i ■   x.--■ ■   i-2; cosh ik - 2i)it f a)   dt.

4ik - i)Eik)  Jr> I sinh ka      k - 2i sinh ka

Now all these terms  in this expression are bounded except for the last one and so

we now examine

^AÄl £ bit) L _2l_^ COsh (A - 2iXl + a) dt]

Now

4ik - i)Eik)   Jo k - 2z

,,,,   ^     ki sin 2a ,, ..
ß (a)= —r—-—r-2z cosh ik - 2i)a

sinh ka
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and since the product of the first term with the rest is bounded, we can forget

about it.   So we are now left with

- — i^íl-   fC [cosh (k - 2z)a cosh (k - 2i)(t + a)/E(k)]b(t) dt
(k - i)(k - 2i) Jo

«       -'M^ f5 ^1 [cosh(k - 2z)(2a + z) + cosh(k-2i)t]/E(k)dt.
(k - i)(k - 2z) ■>"    2

The second term in this expression is bounded so we are now left with

-iH(0 f£ 1
(k - i)(k - 2i)E(k)

f   ^coshU- 2z')(2a+ /)&(/) a7.
Jo 2

Now we finally combine this expression with (3) from Al and after placing every-

thing under a common denominator and ignoring some terms which are obviously

bounded we finally get as the function multiplying h(k, t) under the integral sign

2U- i)(k- 2i) sinh2 kaE(k)

• fcoshtë - 2z')(2a +1) sinh ka
(4)

[sinh ka sinhU- 2i)0- sinh kC sinh (k - 2i)a]

+ sinhU- 2z)a cosh 2(k - z")a[sinhU - 2i)(t - O sinh ka

+ sinh (k - 2i)(t + a) sinh k(] \.

Now combining the first and third terms in the numerator of this last expression

we get

sinh &a[cosh(& - 2z')(2a + /) sinh ka sinh (k - 2z')cf

+ sinh(¿ - 2z')acosh(2¿ - 2z')a sinhU - 2z')(z - £)].

We now can see how the growth terms in this last expression cancel each other

out as we write out

sinh ka[-e(k-2i)(2a+t) ekae-(k-2i)i + e<h-W*e{2k-2i)ae(k-2i)U- £)]

= sinh ka[-ek(2a+t+a->:-) e-2i(2a+t-l + a)  + ek(a+2 a+t- Oe-2¿(a+2o-z+ C)] = q

Similarly, if we look at the second and fourth terms of expression (4), they also

cancel each other out.   This whole analysis, which has been done for positive  k,

can be done in exactly the same way for negative k and thus the proof of the

lemma is completed.
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